Skip to main content

Generalizable Theory of Reynolds Stress

  • Conference paper
  • First Online:
Progress in Turbulence IX (iTi 2021)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 267))

Included in the following conference series:

Abstract

We generalize the Lagrangian transport theory to include the normal and shear Reynolds stresses, so that a complete tensor can be constructed. The ideology is based on imposition of the momentum and energy balance to a control volume moving at the local mean velocity, which bears the effect of de-coupling the mean from the fluctuation components. The resulting transport equations are verified, with available DNS data. Representation of the fluxes in this form leads to the dissipation scaling, which collapses the \(u^{\prime 2}\), \(v^{\prime 2}\) and \(u^{\prime }v^{\prime }\) gradient profiles for all Reynolds numbers. Addition of the energy spectra, derivable from the maximum entropy principle, completes the Reynolds stress theory, to fully prescribe the turbulence structures in canonical geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.-W. Lee, Lagrangian transport equations and an iterative solution method for turbulent jet flows. Phys. D 403, 132333 (2020)

    Google Scholar 

  2. T.-W. Lee, The Reynolds stress in turbulence from a Lagrangian perspective. J. Phys. Commun. 2(5), 055027 (2018)

    Google Scholar 

  3. T.-W. Lee, J. Park, Integral formula for determination of the Reynolds stress in canonical flow geometries, in Progress in Turbulence VII., vol. 196, eds. by R. Örlü, A. Talamelli , M. Oberlack, J. Peinke (Springer, Cham, 2017), pp. 147–152; Springer Proceedings Phys

    Google Scholar 

  4. T.-W. Lee, Origin of turbulence in wall-bounded turbulent flows, from a Lagrangian perspective. Submitted to a fluid journal. An alternate version is viewable and citable as, arXiv:2006.01634 (2021)

  5. T.-W. Lee, Lognormality in turbulence energy spectra. Entropy 22(6), 669 (2020)

    Article  Google Scholar 

  6. T.-W. Lee, Scaling of the maximum-entropy turbulence energy spectra. Eur. J. Mech. B Fluids 87, 128–134 (2021a)

    Article  MathSciNet  Google Scholar 

  7. T.-W. Lee, Asymmetrical order in wall-bounded turbulent flows. Submitted to a physics journal. An alternate version is viewable and citable as, arXiv:2006.01634 (2021)

  8. K. Iwamoto, Y. Suzuki, N. Kasagi, Reynolds number effect on wall turbulence: toward effective feedback control. Int. J. Heat Fluid Flow 23(5), 678–689 (2002)

    Article  Google Scholar 

  9. J. Graham, K. Kanov, X.I.A. Yang, M. Lee, N. Malaya, C.C. Lalescu, R. Burns, G. Eyink, A. Szalay, R.D. Moser, C. Meneveau, A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul. 17(2), 181–215 (2016)

    Article  Google Scholar 

  10. P.R. Spalart, Direct simulation of a turbulent boundary layer up to \({R}e_\theta = 1410\). J. Fluid Mech. 187, 61–98 (1988)

    Article  Google Scholar 

  11. G.I. Barenblatt, A.J. Chorin, V.M. Prostokishin, Scaling laws for fully developed turbulent flow in pipes. Appl. Mech. Rev. 50(7), 413–429 (1997)

    Article  Google Scholar 

  12. E. Gutmark, I. Wygnanski, The planar turbulent jet. J. Fluid Mech. 73(3), 465–495 (1976)

    Article  Google Scholar 

  13. I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22(6), 065103 (2010)

    Google Scholar 

  14. V. Kitsios, C. Atkinson, J. Sillero, G. Borrell, A. Gungor, J. Jiménez, J. Soria, Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer. Int. J. Heat Fluid Flow 61, 129–136 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-W. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, TW. (2021). Generalizable Theory of Reynolds Stress. In: Örlü, R., Talamelli, A., Peinke, J., Oberlack, M. (eds) Progress in Turbulence IX. iTi 2021. Springer Proceedings in Physics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-80716-0_32

Download citation

Publish with us

Policies and ethics