Skip to main content

WRF Simulations to Investigate Processes Across Scales (WRFSCALE)

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '20

Abstract

Different scientific aspects ranging from boundary layer research and air quality modeling to data assimilation applications were addressed with the Weather Research and Forecasting (WRF) model from the km-scale down to the turbulence-permitting scale.

Case study simulations in as different regions as the central United States and the United Arab Emirates were performed to investigate the evolution of the convective boundary layer. The multi-nested WRF setup, driven by the operational analysis of the European Centre for Medium-range Weather Forecasts (ECMWF), high-resolution terrain, and land cover data sets simulated a realistic evolution of the internal turbulent structure of the boundary layer including the transitions between daytime and nighttime conditions. Simulations with km-scale resolution over the United Arab Emirates revealed the performance of the WRF model compared to surface station data in this arid region.

An air quality forecast system based on the WRF-Chem model was set up and its performance was tested with a resolution as fine as 50 m for Stuttgart. It demostrated good performance in representing the morning an evening rush hour peak concentrations and their reduction due to the developing daytime turbulence.

Data assimilation experiments demonstrated the beneficial influence of state-of-the-art lidar measurements on the forecast performance of WRF. A further improvement was found when the more sophisticated hybrid 3DVAR-ETKF method was applied, since this method includes a more sophisticated flow-dependent model error contribution spreading the information of the observations more realistically in the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ecmwf.int.

  2. 2.

    https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012.

  3. 3.

    https://www.usgs.gov/land-resources/eros/coastal-changes-and-impacts/gmted2010.

  4. 4.

    https://www2.jpl.nasa.gov/srtm/.

  5. 5.

    https://www.lubw.baden-wuerttemberg.de/.

  6. 6.

    https://landsat.gsfc.nasa.gov.

  7. 7.

    https://icdc.cen.uni-hamburg.de/daten/land/modis-landsurfacetype.html.

  8. 8.

    https://atmosphere.copernicus.eu

References

  1. H.S. Bauer, S.K. Muppa, V. Wulfmeyer, K. Warrach-Sagi, F. Späth, Multi-nested WRF simulations for studying planetary boundary layer processes on the turbulence-permitting scale in a realistic mesoscale environment. Tellus A 72, 1–28 (2020)

    Article  Google Scholar 

  2. O. Branch, A. Behrendt, Z. Gong, T. Schwitalla, V. Wulfmeyer, Convection initiation over the eastern Arabian peninsula. Meteorol. Zeitschrift 29, 67–77 (2020)

    Article  Google Scholar 

  3. R. Fonseca, M. Temimi, S. Thota, N.R. Nelli, M.J. Weston, K. Suzuki, J. Uchida, K.N. Kumar, O. Branch, Y. Wehbe, T. Al Hosari, N. Al Shamsi, A. Shalaby, On the analysis of the performance of WRFand NICAMin a hyperarid environment. Weather Forecast. 35, 891–919 (2020)

    Article  Google Scholar 

  4. C. Granier, S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, M. Guevara, J.P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, K. Sindelarova, The Copernicus Atmospheric Monitoring Service global and regional emissions (April 2019 version). https://doi.org/10.24380/d0bn-kx16

  5. G.A. Grell, S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, B. Eder, Fully coupled online chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005)

    Article  Google Scholar 

  6. S.Y. Hong, Y. Noh, J. Dudhia, A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 134, 2318–2341 (2006)

    Article  Google Scholar 

  7. M.J. Iacono, J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, W.D. Collins, Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer model. J. Geophys. Res. 113(D13), 103 (2008)

    Google Scholar 

  8. H. Kusaka, F. Kimura, Coupling a single-layer urban canopy model with a simple atmospheric model.: Impact on urban heat island simulations for an idealized case. J. Meteor. Soc. Japan 82, 67–80 (2004)

    Article  Google Scholar 

  9. D.R. Marsh, M.J. Mills, D.E. Kinnison, J. Lamarque, N. Calvo, L.M. Polvani, Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate 26, 7372–7391 (2013)

    Article  Google Scholar 

  10. N.R. Nelli, M. Temimi, R.M. Fonseca, M.J. Weston, M.S. Thota, V.K. Vallapil, O. Branch, H.D. Wizemann, V. Wulfmeyer, Y. Wehbe, Micrometeorological measurements in an arid environment. Diurnal characteristics and surface energy balance closure. Atmos. Env. 234, 104 745 (2020). https://doi.org/10.1016/j.atmospheres.2019.104745

  11. N.R. Nelli, M. Temimi, R.M. Fonseca, M.J. Weston, M.S. Thota, V.K. Vallapil, O. Branch, V. Wulfmeyer, Y. Wehbe, T. Al Hosary, A. Shalaby, N. Al Shamsi, H. Al Naqbi, Impact of roughness length on WRF simulated land-atmosphere interactions over a hyper-arid region. Earth Sp. Sci. (2020). https://doi.org/10.1029/2020EA001165

  12. G.Y. Niu, Z.L. Yang, K.E. Mitchell, F. Chen, M.B. Ek, M. Barlage, A. Kumar, K. LManning, D. Niyogi, E. Rosero, M. Tewari, Y. Xia, The community Noah land surface model with multiparameterization options (Noah-MP: 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 116, D12 109 (2011)

    Google Scholar 

  13. T. Schwitalla, O. Branch, V. Wulfmeyer, Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian peninsula. Quart. J. Roy. Meteorol. Soc. 146, 846–869 (2020)

    Article  Google Scholar 

  14. W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, Z. Liu, J. Berner, W. Wang, J.G. Powers, M.G. Duda, D.M. Barker, X.Y. Huang, A description OD the Advanced Research WRF version 4 (2019). https://doi.org/10.5065/1dhf-6p97

  15. G.P. Thompson, R. Field, R.M. Rasmussen, W.D. Hall, Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev. 136, 5095–5115 (2008)

    Article  Google Scholar 

  16. R. Thundathil, T. Schwitalla, A. Behrendt, S.K. Muppa, S. Adam, V. Wulfmeyer, Assimilation of lidar water vapor mixing ratio and temperature profiles into a coonvection-permitting model. J. Meteorol. Soc. Japan 98, 959–986 (2020). https://doi.org/10.2151/jmsj.2020049

    Article  Google Scholar 

  17. D.D. Turner, V. Wulfmeyer, L.K. Berg, J.H. Schween, Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. 119, 11 151–11 165 (2014). https://doi.org/10.1002/2014D022202

  18. V. Wulfmeyer, D.D. Turner, B. Baker, A. Behrendt, T. Bonin, A. Brewer, M. Burban, A. Choukulkar, E. Dumas, R. Hardesty, T. Heus, J. Ingwersen, D. Lange, T. Lee, S. Metzendorf, S. Muppa, T. Meyers, R. Newsom, M. Osman, S. Raasch, A new research approach for obswerving and characterizing land-atmosphere feedback. Bull. Am. Meteorol. Soc. 99, 1639–1667 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Stefan Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, HS., Schwitalla, T., Branch, O., Thundathil, R. (2021). WRF Simulations to Investigate Processes Across Scales (WRFSCALE). In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '20. Springer, Cham. https://doi.org/10.1007/978-3-030-80602-6_31

Download citation

Publish with us

Policies and ethics