Skip to main content

The Method of Collision Risk Assessment Using Soft Safety Domains of Unmanned Vehicles

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education IV (ICCSEEA 2021)

Abstract

This work presents a new method of real-time approximate volumetric collision risk assessment relating to the joint motion of a large group of unmanned vehicles in confined areas. The authors propose the novel concept of multi-level dynamic soft safety domains and spherical dynamic soft topology that allows defining non-spherical safety domains by measuring various radiuses within sectors located in different longitude and latitude. The nonlinearity of the proposed spherical topology allows us to use a novel volumetric approach to collision risk assessments. If the safety domains of various objects overlap at some point within joint motion space, their safety grades should be summed up with respect to the volumes of the cells. The proposed method builds the distribution of the collision risk over the space to prioritize risks properly. The proposed method is quite simple and fast, it allows unmanned vehicles to effectively assess the collision risks imposed by participants of the joint motion process in situations of very dense traffic of numerous vehicles. It provides the acceptable performance of collision risk assessment. The proposed collision risk assessment method is intended to be used in the real-time navigation support systems for large groups of unmanned vehicles to keep safety during cooperative trajectory planning and re-planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sargolzaei, A., Abbaspour, A., Crane, C.D.: Control of cooperative unmanned aerial vehicles: review of applications, challenges, and algorithms. In: Amini, M.H. (ed.) Optimization, Learning, and Control for Interdependent Complex Networks. AISC, vol. 1123, pp. 229–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34094-0_10

    Chapter  Google Scholar 

  2. Sherstjuk, V.: Scenario-case coordinated control of heterogeneous ensembles of unmanned aerial vehicles. In: Proceedings of 2015 IEEE 3rd International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD 2015), Kyiv, pp. 275–279 (2015). https://doi.org/10.1109/APUAVD.2015.7346620

  3. Aenugu, V., Woo, P.-Y.: Mobile robot path planning with randomly moving obstacles and goal. Int. J. Intell. Syst. Appl. (IJISA) 4(2), 1–15 (2012). https://doi.org/10.5815/ijisa.2012.02.01

    Article  Google Scholar 

  4. Seif, R., Oskoei, M.A.: Mobile robot path planning by RRT* in dynamic environments. Int. J. Intell. Syst. Appl. (IJISA) 7(5), 24–30 (2015). https://doi.org/10.5815/ijisa.2015.05.04

    Article  Google Scholar 

  5. Kenmogne, I.-F., Drevelle, V., Marchand, E.: Using constraint propagation for cooperative UAV localization from vision and ranging. In: Ceberio, M., Kreinovich, V. (eds.) Decision Making under Constraints. SSDC, vol. 276, pp. 133–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40814-5_16

    Chapter  Google Scholar 

  6. Eljinini, M.A.H., Tayyar, A.: Collision-free random paths between two points. Int. J. Intell. Syst. Appl. (IJISA) 12(3), 27–34 (2020). https://doi.org/10.5815/ijisa.2020.03.04

    Article  Google Scholar 

  7. Bahr, N.J.: System Safety Engineering and Risk Assessment: A Practical Approach. 2nd Ed, 444 p. CRC Press, Boco Raton (2017). https://doi.org/10.1201/b17854

  8. Al Johani, M.D., Qureshi, R.: Proposed risk management model to handle changing requirements. Int. J. Educ. Manag. Eng. (IJEME) 9(5), 18–25 (2019). https://doi.org/10.5815/ijeme.2019.05.03

    Article  Google Scholar 

  9. Luxhoj, J., Coit, D.: Modeling low probability/high consequence events: an aviation safety risk model. In: Proceedings of the Reliability & Maintainability Symposium (RAMS-06), Newport Beach, CA, USA, pp. 215–220 (2006). https://doi.org/10.1109/RAMS.2006.1677377

  10. Netjasov, F., Janic, M.: A review of research on risk and safety modeling in civil aviation. J. Air Transp. Manag. 14(4), 213–220 (2008). https://doi.org/10.1016/j.jairtraman.2008.04.008

    Article  Google Scholar 

  11. Janic, M.: An assessment of risk and safety in civil aviation. J. Air Transp. Manag. 6(1), 43–50 (2000). https://doi.org/10.1016/S0969-6997(99)00021-6

    Article  Google Scholar 

  12. Ale, B.J.M., et al.: Further development of a causal model for air transport safety (CATS): building the mathematical heart. Reliab. Eng. Syst. Saf. 94(9), 1433–1441 (2009). https://doi.org/10.1016/j.ress.2009.02.024

    Article  Google Scholar 

  13. Ali, B.S., Ochieng, W.Y., Majumdar, A.: ADS-B: Probabilistic safety assessment. J. Navig. 70, 887–906 (2017). https://doi.org/10.1017/S0373463317000054

    Article  Google Scholar 

  14. Tabassum, A., Sabatini, R., Gardi, A.: Probabilistic safety assessment for UAS separation assurance and collision avoidance systems. Aerospace 6, 19 (2019). https://doi.org/10.3390/aerospace6020019

    Article  Google Scholar 

  15. Emmanuel, I.: Fuzzy logic-based control for autonomous vehicle: a survey. Int. J. Educ. Manag. Eng. (IJEME) 7(2), 41–49 (2017). https://doi.org/10.5815/ijeme.2017.02.05

    Article  Google Scholar 

  16. Seo, J., Kim, Y., Kim, S., Tsourdos, A.: Collision avoidance strategies for unmanned aerial vehicles in formation flight. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2718–2734 (2017). https://doi.org/10.1109/TAES.2017.2714898

    Article  Google Scholar 

  17. Ramasamy, S., Sabatini, R., Gardi, A.: A unified analytical framework for aircraft separation assurance and UAS sense-and-avoid. J. Intell. Rob. Syst. 91(3–4), 735–754 (2017). https://doi.org/10.1007/s10846-017-0661-z

    Article  Google Scholar 

  18. Chen, M., Xiong, Z., Liu, J., Wang, R., Xiong, J.: Cooperative navigation of unmanned aerial vehicle swarm based on cooperative dilution of precision. Int. J. Adv. Rob. Syst. 17(3), 1 (2020). https://doi.org/10.1177/1729881420932717

    Article  Google Scholar 

  19. Neog, T.J., Sut, D.K.: An introduction to the theory of imprecise soft sets. Int. J. Intell. Syst. Appl. (IJISA) 4(11), 75–83 (2012). https://doi.org/10.5815/ijisa.2012.11.09

    Article  Google Scholar 

  20. Molodtsov, D.A.: Soft set theory – first results. Comput. Math. Appl. 37, 19–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sherstjuk, V., Zharikova, M., Levkivskiy, R.: Computational model of soft safety domains and rough motion corridors within configuration spaces. In: CEUR Workshop Proceedings, vol. 2623, pp. 277–293 (2020)

    Google Scholar 

  22. Tripathy, B.K., Arun, K.R.: Soft sets and its applications. In: John, S.J. (ed.) Handbook of Research on Generalized and Hybrid Set Structures and Applications for Soft Computing, pp. 65–85. IGI Global (2016). https://doi.org/10.4018/978-1-4666-9798-0.ch005

  23. Sherstjuk, V., Zharikova, M., Sokol, I., Levkivskiy, R.: Vehicles’ joint motion model based on dynamic soft rough set. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2020. AISC, vol. 1247, pp. 231–242. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55506-1_21

    Chapter  Google Scholar 

  24. Sherstjuk, V., Zharikova, M., Levkivskiy, R.: Bi-soft open sphere topology model of configuration space for reactive joint motion planning of unmanned vehicles. In: CEUR Workshop Proceedings, vol. 2608, pp. 169–183 (2020)

    Google Scholar 

  25. Allam, A.A., Bakeir, M.Y., Abo-Tabl, E.A.: Some methods for generating topologies by relations. Bull. Malaysia Math. Soc. Ser. 2(31), 35–45 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Al Ghour, S., Bin-Saadon, A.: On some generated soft topological spaces and soft homogeneity. Heliyon 5(7), e02061 (2019). https://doi.org/10.1016/j.heliyon.2019.e02061

    Article  Google Scholar 

  27. Ali, M.I., Mahmood, T., Rehman, M.M.U., Aslam, M.F.: On lattice ordered soft sets. Appl. Soft Comput. 36, 499–505 (2015). https://doi.org/10.1016/j.asoc.2015.05.052

    Article  Google Scholar 

  28. Zharikova, M., Sherstjuk, V.: Case-based approach to intelligent safety domains assessment for joint motion of vehicles ensembles. In: Proceedings of the 4th International Conference on Methods and Systems of Navigation and Motion Control, Kyiv, pp. 245–250 (2016). https://doi.org/10.1109/MSNMC.2016.7783153

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sherstjuk, V., Zharikova, M., Sokol, I., Dorovskaja, I., Levkivskiy, R., Gusev, V. (2021). The Method of Collision Risk Assessment Using Soft Safety Domains of Unmanned Vehicles. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education IV. ICCSEEA 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-80472-5_9

Download citation

Publish with us

Policies and ethics