Skip to main content

Decision Support System in Sprinkler Irrigation Based on a Fractional Moisture Transport Model

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education IV (ICCSEEA 2021)

Abstract

The paper presents a novel algorithm for decision support in sprinkler irrigation and its software implementation. The proposed algorithm is based on the modeling of moisture transport using a fractional differential generalization of the Richards equation stated in terms of water head and on the usage of particle swarm optimization for model calibration. The paper also describes the algorithm’s implementation that contains a field installed hardware part that monitors soil and surface air condition, and an analytical software part that stores and processes monitoring data in order to provide recommendations on irrigation schedules and rates. The proposed technique allows to increase the simulation accuracy up to 7% while modeling 3 months vegetative period enabling essential increase in the recommendation adaptability to the changing vegetation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akwu, S., Bature, U.I., Jahun, K.I., Baba, M.A., Nasir, A.Y.: Automatic plant irrigation control system using Arduino and GSM module. Int. J. Eng. Manuf. 10(3), 12–26 (2020). https://doi.org/10.5815/ijem.2020.03.02

    Article  Google Scholar 

  2. Okine, A., Appiah, M., Ahmad, I., Asante-Badu, B., Uzoejinwa, B.: Design of a green automated wireless system for optimal irrigation. Int. J. Comput. Netw. Inf. Secur. 12(3), 22–32 (2020). https://doi.org/10.5815/ijcnis.2020.03.03

    Article  Google Scholar 

  3. Rinaldi, M., He, Z.: Decision support systems to manage irrigation in agriculture. Adv. Agron. 123, 229–279 (2014). https://doi.org/10.1016/B978-0-12-420225-2.00006-6

    Article  Google Scholar 

  4. Pachepsky, Y., Timlin, D.: Water transport in soils as in fractal media. J. Hydroogy 204(1–4), 98–107 (1998). https://doi.org/10.1016/S0022-1694(97)00110-8

    Article  Google Scholar 

  5. Pachepsky, Y., Timlin, D., Rawls, W.: Generalized Richards’ equation to simulate water transport in unsaturated soils. J. Hydrol. 272, 3–13 (2003). https://doi.org/10.1016/S0022-1694(02)00251-2

    Article  Google Scholar 

  6. Tu, T., Ercan, A., Levent Kavvas, M.: Time–space fractional governing equations of transient groundwater flow in confined aquifers: numerical investigation. Hydrol. Process. 32, 1406–1419 (2018). https://doi.org/10.1002/hyp.11500

    Article  Google Scholar 

  7. Romashchenko, M.I., Matiash, T.V., Bohaienko, V.O., Kovalchuk, V.P., et al.: Development experience and ways of improvement of irrigation management systems (in Ukrainian). Land Reclam. Water Manag. 2, 17–30 (2019). https://doi.org/10.31073/mivg201902-207

    Article  Google Scholar 

  8. Steduto, P., Hsiao, T.C., Raes, D., Fereres, E.: AquaCrop—the FAO crop model to simulate yield response to water: I Concepts and underlying principles. Agron. J. 101, 426–437 (2009). https://doi.org/10.2134/agronj2008.0139s

    Article  Google Scholar 

  9. Doorenbos, J., Kassam, A.H.: Yield Response to Water. FAO Irrigation and Drainage Papers No. 33. FAO, Rome (1979)

    Google Scholar 

  10. Steduto, P., Raes, D., Hsiao, T.C., Fereres, E.: AquaCrop: concepts, rationale and operation. In: Steduto, P., Hsiao, T.C., Fereres, E., Raes, D. (eds.) Crop Yield Response to Water.FAO irrigation and drainage paper no. 66, pp. 17–49. FAO, Rome (2012)

    Google Scholar 

  11. Allen, R.G., Pereira, L.S., Smith, M., Raes, D., Wright, J.L.: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drainage Eng. 131(1), 2–13 (2005). https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2)

    Article  Google Scholar 

  12. Shtoiko, D.A., Pysarenko, V.A., Bychko, O.S.: Estimated methods for determining total evaporation and irrigation time of crops. Zroshuvalne zemlerobstvo, pp. 3–8 (1977). (in Ukrainian)

    Google Scholar 

  13. Ivanov, N.N.: On the Determination of Evaporation Values, pp. 189–196. Yzv. HHO, Moskow (1954). (in Russian)

    Google Scholar 

  14. Williams, J.R., Izaurralde, R.C.: The APEX model. BRC Report 2005-02. Blackland Research and Extension Center, Blackland (2005)

    Google Scholar 

  15. Borah, D.K., et al.: Sediment and nutrient modeling for TMDL development and implementation. Trans. ASABE 49(4), 967–986 (2006)

    Article  Google Scholar 

  16. Panagopoulos, Y., Makropoulos, C., Mimikou, M.: Decision support for diffuse pollution management. Environ. Model Softw. 30, 57–70 (2012). https://doi.org/10.1016/j.envsoft.2011.11.006

    Article  Google Scholar 

  17. Styczen, M., Poulsen, R.N., Falk, A.K., Jørgensen, G.H.: Management model for decision support when applying low quality water in irrigation. Agric. Water Manag. 98, 472–781 (2010). https://doi.org/10.1016/j.agwat.2010.10.017

    Article  Google Scholar 

  18. Smith, M.: CROPWAT, a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper No. 46. (1992)

    Google Scholar 

  19. Car, N.J., Christen, E.W., Hornbuckle, J.W., Moore, G.A.: Using a mobile phone short messaging service (SMS) for irrigation scheduling in Australia—farmers’ participation and utility evaluation. Comput. Electron. Agric. 84, 132–143 (2012). https://doi.org/10.1016/j.compag.2012.03.003

    Article  Google Scholar 

  20. Abrahamsen, P., Hansen, S.: Daisy: an open soil-crop-atmosphere model. Environ. Model Softw. 15, 313–330 (2000). https://doi.org/10.1016/S1364-8152(00)00003-7

    Article  Google Scholar 

  21. Zhang, Y., Feng, L.: CropIrri: a decision support system for crop irrigation management. In: Li, D., Zhao, C. (eds.) CCTA 2009. IAICT, vol. 317, pp. 90–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12220-0_14

    Chapter  Google Scholar 

  22. Keating, B.A., et al.: An overview of APSIM, a model designed for farming system simulation. Eur. J. Agron. 18(3), 267–288 (2003). https://doi.org/10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  23. Stockle, C.O., Donatelli, M., Nelson, R.: CropSyst, a cropping systems simulation model. Eur. J. Agron. 18, 289–307 (2003). https://doi.org/10.1016/S1161-0301(02)00109-0

    Article  Google Scholar 

  24. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  25. Romashchenko, M.I., Bohaienko, V.O., Matiash, T.V., Kovalchuk, V.P., Danylenko, Iu.Iu.: Influence of evapotranspiration assessment on the accuracy of moisture transport modeling under the conditions of sprinkling irrigation in the south of Ukraine. Arch. Agron. Soil Sci. 66(10), 1424–1435 (2020). https://doi.org/10.1080/03650340.2019.1674445

  26. Rosetta Version 1.0 (Free downloaded program). U.S.Salinity Laboratory ARSUSDA. http://www.ussl.ars.usda.gov. Accessed 10 Sept 2020

  27. Bogaenko, V.A., Bulavatsky, V.M., Kryvonos, Iu.G.: On mathematical modeling of fractional-differential dynamics of flushing process for saline soils with parallel algorithms usage. J. Autom. Inf. Sci. 48(10), 1–12 (2016). https://doi.org/10.1615/JAutomatInfScien.v48.i10.10

  28. Bulavatsky, V.M.: Mathematical modeling of dynamics of the process of filtration convection diffusion under the condition of time nonlocality. J. Autom. Inf. Sci. 44(2), 13–22 (2012). https://doi.org/10.1615/JautomatInfScien.v44.i4.20

    Article  Google Scholar 

  29. Zhang, Y.A.: Comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering, Article no 931256 (2015). https://doi.org/10.1155/2015/931256

  30. Bohaienko, V., Gladky, A., Romashchenko, M., Matiash, T.: Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm. Appl. Math. Comput. 390, Article no 125665 (2021). https://doi.org/10.1016/j.amc.2020.125665

  31. Rao, N.H.: Field test of a simple soil-water balance model for irrigated areas. J. Hydrol. 91, 179–186 (1987). https://doi.org/10.1016/0022-1694(87)90135-1

    Article  Google Scholar 

  32. IRROMETER Company Inc. https://www.irrometer.com/sensors.html. Accessed 10 Sept 2020

  33. Kovalchuk, V., Demchuk, O., Demchuk, D., Voitovich, O.: Data mining for a model of irrigation control using weather web-services. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 133–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_14

    Chapter  Google Scholar 

  34. Romashchenko, M.I., Shatkovsky, A.P., Onotsky, V.V.: Mathematical model of flat-vertical profile moisture transfer under trickle irrigation in conditions of incomplete saturation. Agric. Sci. Pract. 3(3), 35–40 (2016). https://doi.org/10.15407/agrisp3.03.035

    Article  Google Scholar 

  35. Bohaienko, V.O.: Parallel finite-difference algorithms for three-dimensional space-fractional diffusion equation with ψ-Caputo derivatives. Comput. Appl. Math. 39(3), 1–20 (2020). https://doi.org/10.1007/s40314-020-01191-x

    Article  MathSciNet  MATH  Google Scholar 

  36. Bohaienko, V.O.: Parallel algorithms for modelling two-dimensional non-equilibrium salt transfer processes on the base of fractional derivative model. Fract. Calculus Appl. Anal. 21(3), 654–671 (2018). https://doi.org/10.1515/fca-2018-0035

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod Bohaienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bohaienko, V., Matiash, T., Krucheniuk, A. (2021). Decision Support System in Sprinkler Irrigation Based on a Fractional Moisture Transport Model. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education IV. ICCSEEA 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-80472-5_2

Download citation

Publish with us

Policies and ethics