Skip to main content

Towards Linking CNN Decisions with Cancer Signs for Breast Lesion Classification from Ultrasound Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12722))

Included in the following conference series:

Abstract

Convolutional neural networks have shown outstanding object recognition performance, especially for visual recognition tasks such as tumor classification in 2D ultrasound (US) images. In Computer-Aided Diagnosis (CAD) systems, interpreting CNN’s decision is crucial for accepting the system in the clinical use. This paper is concerned with ‘visual explanations’ for decisions from CNN models trained on ultrasound images. In particular, we investigate the link between the CNN decision and the calcification cancer sign in breast lesion classification task. To this end, we study the output visualization of two different breast lesion recognition CNN models in two folds: Firstly, we explore two existing visualization approaches, Grad-CAM and CRM, to gain insight into the function of feature layers. Secondly, we introduce an adaptive Grad-CAM, called EGrad-CAM, which uses information entropy to freeze feature maps with no or minimal information. Extensive analysis and experiments using 1624 US images and two breast classification models show that calcification feature contributes to the CNN classification decision for both malignant and benign lesions. Furthermore, we show many feature maps in the final convolution layer are not contributing to the CNN decision, and our EGrad-CAM produces similar visualization output to Grad-CAM using 24%–87% of the feature maps. Our study demonstrates that the CNN decision visualization is a promising direction for bridging the gap between CNN classification decision of US images of breast lesions and cancer signs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Mercado, C.L.: Bi-rads update. Radiol. Clin. 52(3), 481–487 (2014)

    Article  MathSciNet  Google Scholar 

  3. Zhu, Y.-C., et al.: A generic deep learning framework to classify thyroid and breast lesions in ultrasound images. Ultrasonics 110, 106300 (2021)

    Article  Google Scholar 

  4. Wang, Y., Choi, E.J., Choi, Y., Zhang, H., Jin, G.Y., Ko, S.-B.: Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning. Ultrasound Med. Biol. 46(5), 1119–1132 (2020)

    Article  Google Scholar 

  5. Tanaka, H., Chiu, S.-W., Watanabe, T., Kaoku, S., Yamaguchi, T.: Computer-aided diagnosis system for breast ultrasound images using deep learning. Phys. Med. Biol. 64(23), 235013 (2019)

    Article  Google Scholar 

  6. Moon, W.K., Lee, Y.-W., Ke, H.-H., Lee, S.H., Huang, C.-S., Chang, R.-F.: Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput. Meth. Program. Biomed. 190, 105361 (2020)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  9. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  10. Kim, I., Rajaraman, S., Antani, S.: Visual interpretation of convolutional neural network predictions in classifying medical image modalities. Diagnostics 9(2), 38 (2019)

    Article  Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  12. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  13. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  14. Byra, M., et al.: Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion. Med. Phys. 46(2), 746–755 (2019)

    Article  Google Scholar 

  15. Rony, J., Belharbi, S., Dolz, J., Ayed, I.B., McCaffrey, L., Granger, E.: Deep weakly-supervised learning methods for classification and localization in histology images: a survey. arXiv preprint arXiv:1909.03354 (2019)

  16. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25 (2020)

    Google Scholar 

  17. Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network: learning of attention mechanism for visual explanation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10705–10714 (2019)

    Google Scholar 

  18. Zhou, L.-Q., et al.: Lymph node metastasis prediction from primary breast cancer US images using deep learning. Radiology 294(1), 19–28 (2020)

    Article  Google Scholar 

  19. Xie, B., et al.: Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 15(8), 1303–1312 (2020). https://doi.org/10.1007/s11548-020-02182-3

    Article  Google Scholar 

  20. Reyes, M., et al.: On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiol. Artif. Intell. 2(3), e190043 (2020). https://doi.org/10.1148/ryai.2020190043

    Article  Google Scholar 

  21. Yang, H., Kim, J.-Y., Kim, H., Adhikari, S.P.: Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans. Med. Imaging 39(5), 1306–1315 (2019)

    Article  Google Scholar 

  22. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  23. Toussaint, N., et al.: Weakly supervised localisation for fetal ultrasound images. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 192–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_22

    Chapter  Google Scholar 

  24. Baumgartner, C.F., Koch, L.M., Tezcan, K.C., Ang, J.X., Konukoglu, E.: Visual feature attribution using Wasserstein GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8309–8319 (2018)

    Google Scholar 

  25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is sponsored by TenD Innovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Eskandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eskandari, A., Du, H., AlZoubi, A. (2021). Towards Linking CNN Decisions with Cancer Signs for Breast Lesion Classification from Ultrasound Images. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics