Skip to main content

Dense Depth Estimation from Stereo Endoscopy Videos Using Unsupervised Optical Flow Methods

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12722))

Included in the following conference series:

Abstract

In the context of Minimally Invasive Surgery, estimating depth from stereo endoscopy plays a crucial role in three-dimensional (3D) reconstruction, surgical navigation, and augmentation reality (AR) visualization. However, the challenges associated with this task are three-fold: 1) feature-less surface representations, often polluted by artifacts, pose difficulty in identifying correspondence; 2) ground truth depth is difficult to estimate; and 3) an endoscopy image acquisition accompanied by accurately calibrated camera parameters is rare, as the camera is often adjusted during an intervention. To address these difficulties, we propose an unsupervised depth estimation framework (END-flow) based on an unsupervised optical flow network trained on un-rectified binocular videos without calibrated camera parameters. The proposed END-flow architecture is compared with traditional stereo matching, self-supervised depth estimation, unsupervised optical flow, and supervised methods implemented on the Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) Challenge dataset. Experimental results show that our method outperforms several state-of-the-art techniques and achieves a close performance to that of supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://endovissub2019-scared.grand-challenge.org/.

References

  1. Allan, M., et al.: Stereo correspondence and reconstruction of endoscopic data challenge. arXiv preprint arXiv:2101.01133 (2021)

  2. Bernhardt, S., Abi-Nahed, J., Abugharbieh, R.: Robust dense endoscopic stereo reconstruction for minimally invasive surgery. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 254–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36620-8_25

    Chapter  Google Scholar 

  3. Chen, L., Tang, W., John, N.W., Wan, T.R., Zhang, J.J.: Slam-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality. Comput. Methods Prog. Biomed 158, 135–146 (2018)

    Article  Google Scholar 

  4. Eddie”Edwards, P., Psychogyios, D., Speidel, S., Maier-Hein, L., Stoyanov, D.: Serv-ct: a disparity dataset from ct for validation of endoscopic 3d reconstruction. arXiv e-prints pp. arXiv-2012 (2020)

    Google Scholar 

  5. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  6. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    Chapter  Google Scholar 

  7. Geng, J., Xie, J.: Review of 3-d endoscopic surface imaging techniques. IEEE Sens. J. 14(4), 945–960 (2013)

    Article  Google Scholar 

  8. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  9. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  10. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vision Image Underst. 68(2), 146–157 (1997)

    Article  Google Scholar 

  11. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 807–814. IEEE (2005)

    Google Scholar 

  12. Kalia, M., Navab, N., Salcudean, T.: A real-time interactive augmented reality depth estimation technique for surgical robotics. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8291–8297. IEEE (2019)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Lin, J., et al.: Endoscopic depth measurement and super-spectral-resolution imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 39–47. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_5

    Chapter  Google Scholar 

  15. Liu, L., et al.: Learning by analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6489–6498 (2020)

    Google Scholar 

  16. Liu, X., et al.: Reconstructing sinus anatomy from endoscopic video – towards a radiation-free approach for quantitative longitudinal assessment. In: Martel, A.L., Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_1

    Chapter  Google Scholar 

  17. Luo, X., Jayarathne, U.L., McLeod, A.J., Pautler, S.E., Schlacta, C.M., Peters, T.M.: Uncalibrated stereo rectification and disparity range stabilization: a comparison of different feature detectors. In: Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9786, p. 97861C. International Society for Optics and Photonics (2016)

    Google Scholar 

  18. Lurie, K.L., Angst, R., Zlatev, D.V., Liao, J.C., Bowden, A.K.E.: 3d reconstruction of cystoscopy videos for comprehensive bladder records. Biomed. Opt. Exp. 8(4), 2106–2123 (2017)

    Article  Google Scholar 

  19. Mahmood, F., Durr, N.J.: Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med. Image Anal. 48, 230–243 (2018)

    Article  Google Scholar 

  20. Mahmoud, N., Collins, T., Hostettler, A., Soler, L., Doignon, C., Montiel, J.M.M.: Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE Trans. Medical Imag. 38(1), 79–89 (2018)

    Article  Google Scholar 

  21. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

    Google Scholar 

  22. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3061–3070 (2015)

    Google Scholar 

  23. Mirota, D.J., Ishii, M., Hager, G.D.: Vision-based navigation in image-guided interventions. Ann. Rev. Biomed. Eng. 13 (2011)

    Google Scholar 

  24. Ozyoruk, K.B., et al.: Endoslam dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal., 102058 (2021)

    Google Scholar 

  25. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  26. Phan, T.B., Trinh, D.H., Lamarque, D., Wolf, D., Daul, C.: Dense optical flow for the reconstruction of weakly textured and structured surfaces: Application to endoscopy. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 310–314. IEEE (2019)

    Google Scholar 

  27. Pratt, P., Bergeles, C., Darzi, A., Yang, G.Z.: Practical intraoperative stereo camera calibration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 667–675. Springer (2014)

    Google Scholar 

  28. Ren, Z., He, T., Peng, L., Liu, S., Zhu, S., Zeng, B.: Shape recovery of endoscopic videos by shape from shading using mesh regularization. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10668, pp. 204–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71598-8_19

    Chapter  Google Scholar 

  29. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1), 7–42 (2002)

    Article  Google Scholar 

  30. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, Proceedings, vol. 1, pp. I-I. IEEE (2003)

    Google Scholar 

  31. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: Mis-slam: real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing. IEEE Rob. Autom. Lett. 3(4), 4068–4075 (2018)

    Article  Google Scholar 

  32. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  33. Visentini-Scarzanella, M., Sugiura, T., Kaneko, T., Koto, S.: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1089–1099 (2017)

    Article  Google Scholar 

  34. Wang, L., et a.: Parallax attention for unsupervised stereo correspondence learning. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  35. Wang, X.Z., Nie, Y., Lu, S.P., Zhang, J.: Deep convolutional network for stereo depth mapping in binocular endoscopy. IEEE Access 8, 73241–73249 (2020)

    Article  Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Widya, A.R., Monno, Y., Okutomi, M., Suzuki, S., Gotoda, T., Miki, K.: Whole stomach 3D reconstruction and frame localization from monocular endoscope video. IEEE J. Transl. Eng. Health Med. 7, 1–10 (2019)

    Article  Google Scholar 

  38. Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.Z.: Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery. In: Hamlyn Symposium on Medical Robotics (2017)

    Google Scholar 

  39. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1983–1992 (2018)

    Google Scholar 

  40. Zampokas, G., Tsiolis, K., Peleka, G., Mariolis, I., Malasiotis, S., Tzovaras, D.: Real-time 3D reconstruction in minimally invasive surgery with quasi-dense matching. In: 2018 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2018)

    Google Scholar 

  41. Zhao, W., Liu, S., Shu, Y., Liu, Y.J.: Towards better generalization: joint depth-pose learning without posenet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9151–9161 (2020)

    Google Scholar 

  42. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Simon, R., Li, Y., Linte, C.A. (2021). Dense Depth Estimation from Stereo Endoscopy Videos Using Unsupervised Optical Flow Methods. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics