Skip to main content

Ensemble of Deep Convolutional Neural Networks with Monte Carlo Dropout Sampling for Automated Image Segmentation Quality Control and Robust Deep Learning Using Small Datasets

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Abstract

Recent progress on deep learning (DL)-based medical image segmentation can enable fast extraction of clinical parameters for efficient clinical workflows. However, current DL methods can still fail and require manual visual inspection of outputs, which is time-consuming and diminishes the advantages of automation. For clinical applications, it is essential to develop DL approaches that can not only perform accurate segmentation, but also predict the segmentation quality and flag poor-quality results to avoid errors in diagnosis. To achieve robust performance, DL-based methods often require large datasets, which are not always readily available. It would be highly desirable to be able to train DL models using only small datasets, but this requires a quality prediction method to ensure reliability. We present a novel segmentation framework utilizing an ensemble of deep convolutional neural networks with Monte Carlo sampling. The proposed framework merges the advantages of both state-of-the-art deep ensembles and Bayesian approaches, to provide robust segmentation with inherent quality control. We successfully developed and tested this framework using just a small MRI dataset of 45 subjects. The framework obtained high mean Dice similarity coefficients (DSC) for segmentation of the endocardium (0.922) and the epicardium (0.942); importantly, segmentation DSC can be accurately predicted with low mean absolute errors (≤0.035), in the absence of the manual ground truth. Furthermore, binary classification of segmentation quality achieved a near-perfect accuracy of 99%. The proposed framework can enable fast and reliable medical image analysis with accurate quality control, and training of DL-based methods using even small datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth, G.A., et al.: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392(10159), 1736–1788 (2018)

    Article  Google Scholar 

  2. Radau, P., et al.: Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J. 49 (2009)

    Google Scholar 

  3. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Petersen, S.E., et al.: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. J. Cardiovasc. Magn. Reson. 15(1), 46 (2013)

    Article  Google Scholar 

  5. Constantinides, C., et al.: Semi-automated cardiac segmentation on cine magnetic resonance images using GVF-Snake deformable models. MIDAS J. 77 (2009)

    Google Scholar 

  6. Casta, C., et al.: Evaluation of the dynamic deformable elastic template model for the segmentation of the heart in MRI sequences. MIDAS J. (2009)

    Google Scholar 

  7. Huang, S., et al.: Segmentation of the left ventricle from cine MR images using a comprehensive approach. MIDAS J. (2009)

    Google Scholar 

  8. Lu, Y., et al.: Automatic image-driven segmentation of left ventricle in cardiac cine MRI. MIDAS J. (2009)

    Google Scholar 

  9. Jolly, M.: Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J. (2009)

    Google Scholar 

  10. O'Brien, S., Ghita, O., Whelan, P.F.: Segmenting the left ventricle in 3D using a coupled ASM and a learned non-rigid spatial model. MIDAS J. (2009)

    Google Scholar 

  11. Wijnhout, J., et al.: LV challenge LKEB contribution: fully automated myocardial contour detection. MIDAS J. (2009)

    Google Scholar 

  12. Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7 (2020)

    Google Scholar 

  13. Roy, A., Conjeti, S., Navab, N., Wachinger, C.: Inherent brain segmentation quality control from fully convnet monte carlo sampling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I, pp. 664–672. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_75

    Chapter  Google Scholar 

  14. DeVries, T., Graham, T.: Leveraging Uncertainty Estimates for Predicting Segmentation Quality. arXiv pre-print server (2018)

    Google Scholar 

  15. Hann, E., et al.: Quality control-driven image segmentation towards reliable automatic image analysis in large-scale cardiovascular magnetic resonance aortic cine imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 750–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_83

  16. Lakshminarayanan, B., Pritzel, V., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. arXiv pre-print server (2017)

    Google Scholar 

  17. Hann, E., et al.: Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping. Med. Image Anal. 71, 102 (2021)

    Article  Google Scholar 

  18. Mehrtash, A., et al.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  19. Fort, S., Hu, H., Lakshminarayanan, B.: Deep ensembles: a loss landscape perspective. arXiv pre-print server (2020)

    Google Scholar 

  20. Pop, R., Fulop, P.: Deep ensemble bayesian active learning : addressing the mode collapse issue in monte carlo dropout via ensembles. arXiv pre-print server (2018)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells, William M., Frangi, Alejandro F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Li, X., et al.: Estimating the ground truth from multiple individual segmentations incorporating prior pattern analysis with application to skin lesion segmentation. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Hann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hann, E., Gonzales, R.A., Popescu, I.A., Zhang, Q., Ferreira, V.M., Piechnik, S.K. (2021). Ensemble of Deep Convolutional Neural Networks with Monte Carlo Dropout Sampling for Automated Image Segmentation Quality Control and Robust Deep Learning Using Small Datasets. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics