Skip to main content

Characterizing Tseitin-Formulas with Short Regular Resolution Refutations

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2021 (SAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12831))

Abstract

Tseitin-formulas are systems of parity constraints whose structure is described by a graph. These formulas have been studied extensively in proof complexity as hard instances in many proof systems. In this paper, we prove that a class of unsatisfiable Tseitin-formulas of bounded degree has regular resolution refutations of polynomial length if and only if the treewidth of all underlying graphs G for that class is in \(O(\log |V(G)|)\). To do so, we show that any regular resolution refutation of an unsatisfiable Tseitin-formula with graph G of bounded degree has length \(2^{\varOmega (tw(G))}/|V(G)|\), thus essentially matching the known \(2^{O(tw(G))}\text {poly}(|V(G)|)\) upper bound up. Our proof first connects the length of regular resolution refutations of unsatisfiable Tseitin-formulas to the size of representations of satisfiable Tseitin-formulas in decomposable negation normal form (DNNF). Then we prove that for every graph G of bounded degree, every DNNF-representation of every satisfiable Tseitin-formula with graph G must have size \(2^{\varOmega (tw(G))}\) which yields our lower bound for regular resolution.

This work has been partly supported by the PING/ACK project of the French National Agency for Research (ANR-18-CE40-0011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that often branch decompositions are defined as unrooted trees. However, it is easy to see that our definition is equivalent, so we use it here since it is more convenient in our setting.

  2. 2.

    [20, Lemma 17] is for locally minimal 1-BP, which encompass minimal size 1-BP.

References

  1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. Theory Comput. 3(1), 81–102 (2007). https://doi.org/10.4086/toc.2007.v003a005

  2. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and tseitin tautologies. Comput. Complex. 20(4), 649–678 (2011). https://doi.org/10.1007/s00037-011-0033-1

  3. Atserias, A., Bonacina, I., de Rezende, S.F., Lauria, M., Nordström, J., Razborov, A.A.: Clique is hard on average for regular resolution. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, 25–29 June, 2018. pp. 866–877. ACM (2018). https://doi.org/10.1145/3188745.3188856

  4. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: superpolynomial lower bounds for superlinear space. In: Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, 19–22 May, 2012, pp. 213–232. ACM (2012). https://doi.org/10.1145/2213977.2213999

  5. Beck, C., Impagliazzo, R.: Strong ETH holds for regular resolution. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June, 2013. pp. 487–494. ACM (2013). https://doi.org/10.1145/2488608.2488669

  6. Ben-Sasson, E.: Hard examples for the bounded depth frege proof system. Comput. Complex. 11(3-4), 109–136 (2002). https://doi.org/10.1007/s00037-002-0172-5

  7. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discret. Math. 306(3), 337–350 (2006). https://doi.org/10.1016/j.disc.2005.12.017

  8. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets communication complexity. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 1008–1014. IJCAI/AAAI Press (2016). http://www.ijcai.org/Abstract/16/147

  9. Buss, S., Nordström, J.: Proof complexity and sat solving. Chapter to appear in the 2nd edition of Handbook of Satisfiability, Draft version available at https://www.math.ucsd.edu/~sbuss/ResearchWeb/ProofComplexitySAT (2019)

  10. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001). https://doi.org/10.1145/502090.502091

  11. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002). https://doi.org/10.1613/jair.989

  12. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

  13. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

  14. Galesi, N., Itsykson, D., Riazanov, A., Sofronova, A.: Bounded-depth frege complexity of tseitin formulas for all graphs. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany. LIPIcs, vol. 138, pp. 49:1–49:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.49

  15. Galesi, N., Talebanfard, N., Torán, J.: Cops-robber games and the resolution of tseitin formulas. ACM Trans. Comput. Theory 12(2), 9:1–9:22 (2020). https://doi.org/10.1145/3378667

  16. Glinskih, L., Itsykson, D.: Satisfiable tseitin formulas are hard for nondeterministic read-once branching programs. In: Larsen, K.G., Bodlaender, H.L., Raskin, J. (eds.) 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21–25, 2017 - Aalborg, Denmark. LIPIcs, vol. 83, pp. 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.MFCS.2017.26

  17. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM J. Comput. 22(4), 661–683 (1993). https://doi.org/10.1137/0222044

  18. Harvey, D.J., Wood, D.R.: Parameters tied to treewidth. J. Graph Theory 84(4), 364–385 (2017). https://doi.org/10.1002/jgt.22030

  19. Itsykson, D., Oparin, V.: Graph expansion, tseitin formulas and resolution proofs for CSP. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0_14

    Chapter  MATH  Google Scholar 

  20. Itsykson, D., Riazanov, A., Sagunov, D., Smirnov, P.: Almost tight lower bounds on regular resolution refutations of tseitin formulas for all constant-degree graphs. Electron. Colloquium Comput. Complex. 26, 178 (2019). https://eccc.weizmann.ac.il/report/2019/178

  21. Lovász, L., Naor, M., Newman, I., Wigderson, A.: Search problems in the decision tree model. SIAM J. Discret. Math. 8(1), 119–132 (1995). https://doi.org/10.1137/S0895480192233867

  22. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM SIGLOG News 2(3), 19–44 (2015). https://dl.acm.org/citation.cfm?id=2815497

  23. Razgon, I.: On the read-once property of branching programs and cnfs of bounded treewidth. Algorithmica 75(2), 277–294 (2016). https://doi.org/10.1007/s00453-015-0059-x

  24. Tseitin, G.: On the complexity of derivation in propositional calculus. Stud. Constructive Math. Math. Logic Part 2, 115–125 (1968)

    MATH  Google Scholar 

  25. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987). https://doi.org/10.1145/7531.8928

  26. Urquhart, A.: A near-optimal separation of regular and general resolution. SIAM J. Comput. 40(1), 107–121 (2011). https://doi.org/10.1137/090772897

  27. Vinyals, M., Elffers, J., Johannsen, J., Nordström, J.: Simplified and improved separations between regular and general resolution by lifting. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 182–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_14

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis de Colnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Colnet, A., Mengel, S. (2021). Characterizing Tseitin-Formulas with Short Regular Resolution Refutations. In: Li, CM., Manyà, F. (eds) Theory and Applications of Satisfiability Testing – SAT 2021. SAT 2021. Lecture Notes in Computer Science(), vol 12831. Springer, Cham. https://doi.org/10.1007/978-3-030-80223-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80223-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80222-6

  • Online ISBN: 978-3-030-80223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics