Skip to main content

Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2021 (SAT 2021)

Abstract

Recently, there has been an interest in studying non-uniform random k-satisfiability (k-SAT) models in order to address the non-uniformity of formulas arising from real-world applications. While uniform random k-SAT has been extensively studied from both a theoretical and experimental perspective, understanding the algorithmic complexity of heterogeneous distributions is still an open challenge. When a sufficiently dense formula is guaranteed to be satisfiable by conditioning or a planted assignment, it is well-known that uniform random k-SAT is easy on average. We generalize this result to the broad class of non-uniform random k-SAT models that are characterized only by an ensemble of distributions over variables with a mild balancing condition. This balancing condition rules out extremely skewed distributions in which nearly half the variables occur less frequently than a small constant fraction of the most frequent variables, but generalizes recently studied non-uniform k-SAT distributions such as power-law and geometric formulas. We show that for all formulas generated from this model of at least logarithmic densities, a simple greedy algorithm can find a solution with high probability.

As a side result we show that the total variation distance between planted and filtered (conditioned on satisfiability) models is o(1) once the planted model produces formulas with a unique solution with probability \(1-o(1)\). This holds for all random k-SAT models where the signs of variables are drawn uniformly and independently at random.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 416061626.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say that an event \(\mathcal {E}\) holds asymptotically almost surely (a. a. s.) if, over a sequence of sets, \(\Pr \left( \mathcal {E}\right) =1\). In the context of this paper, this means \(\Pr \left( \mathcal {E}\right) =1-o(1)\).

  2. 2.

    We refer to the geometric degree-distribution model introduced by Ansótegui et al. [6].

References

  1. Achlioptas, D., Jia, H., Moore, C.: Hiding satisfying assignments: two are better than one. J. Art. Int. Res. 24 (2005). https://doi.org/10.1613/jair.1681

  2. Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D.: Rigorous results for random (2+p)-sat. Theor. Comput. Sci. 265(1–2), 109–129 (2001)

    Google Scholar 

  3. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of SAT formulas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 107–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_8

    Chapter  Google Scholar 

  4. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: On the classification of industrial SAT families. In: Armengol, E., Boixader, D., Grimaldo, F. (eds.) 18th International Conference Catalan Association for Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 277, pp. 163–172. IOS Press (2015). https://doi.org/10.3233/978-1-61499-578-4-163

  5. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_13

    Chapter  Google Scholar 

  6. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT instances. In: Boutilier, C. (ed.) 21st International Joint Conference Artificial Intelligence (IJCAI), pp. 387–392 (2009). http://ijcai.org/Proceedings/09/Papers/072.pdf

  7. Berthet, Q.: Optimal testing for planted satisfiability problems. CoRR abs/1401.2205http://arxiv.org/abs/1401.2205 (2014)

  8. Bläsius, T., Friedrich, T., Sutton, A.M.: On the empirical time complexity of scale-free 3-SAT at the phase transition. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 117–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_7

    Chapter  Google Scholar 

  9. Boufkhad, Y., Dubois, O., Interian, Y., Selman, B.: Regular random k-sat: Properties of balanced formulas. J. Autom. Reasoning 35(1–3), 181–200 (2005)

    Google Scholar 

  10. Bradonjic, M., Perkins, W.: On sharp thresholds in random geometric graphs. In: Jansen, K., Rolim, J.D.P., Devanur, N.R., Moore, C. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014. LIPIcs, vol. 28, pp. 500–514. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.500

  11. Bulatov, A.A., Skvortsov, E.S.: Phase transition for local search on planted SAT. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 175–186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_15

    Chapter  Google Scholar 

  12. Ansótegui, C., Maria Luisa Bonet, J.L.: Scale-free random SAT instances. CoRR abs/1708.06805http://arxiv.org/abs/1708.06805 (2017)

  13. Chao, M., Franco, J.V.: Probabilistic analysis of two heuristics for the 3-satisfiability problem. SIAM J. Comput. 15(4), 1106–1118 (1986)

    Google Scholar 

  14. Chao, M., Franco, J.V.: Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem. Inf. Sci. 51(3), 289–314 (1990)

    Google Scholar 

  15. Chvátal, V., Reed, B.A.: Mick gets some (the odds are on his side). In: 33rd Symposium Foundations of Computer Science (FOCS), pp. 620–627. IEEE Computer Society (1992). https://doi.org/10.1109/SFCS.1992.267789

  16. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4), 759–768 (1988)

    Google Scholar 

  17. Coja-Oghlan, A., Wormald, N.: The number of satisfying assignments of random regular k-SAT formulas. Comb. Prob. Comput. 27(4), 496–530 (2018)

    Google Scholar 

  18. Doerr, B., Neumann, F., Sutton, A.M.: Time complexity analysis of evolutionary algorithms on random satisfiable k-CNF formulas. Algorithmica 78(2), 561–586 (2017)

    Google Scholar 

  19. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. Theor. Comput. 9, 617–651 (2013)

    Google Scholar 

  20. Feldman, V., Perkins, W., Vempala, S.S.: On the complexity of random satisfiability problems with planted solutions. SIAM J. Comput. 47(4), 1294–1338 (2018)

    Google Scholar 

  21. Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. Random Struct. Algorithms 32(4), 519–534 (2008)

    Google Scholar 

  22. Flaxman, A.D.: Average-case analysis for combinatorial problems. Ph.D. thesis, Carnegie Mellon University (May 2006)

    Google Scholar 

  23. Franco, J., Paull, M.C.: Probabilistic analysis of the davis putnam procedure for solving the satisfiability problem. Discrete Appl. Math. 5(1), 77–87 (1983)

    Google Scholar 

  24. Friedgut, E.: Sharp thresholds of graph properties, and the \(k\)-SAT problem. J. Amer. Math. Soc. 12(4), 1017–1054 (1999)

    Google Scholar 

  25. Friedrich, T., Krohmer, A., Rothenberger, R., Sauerwald, T., Sutton, A.M.: Bounds on the satisfiability threshold for power law distributed random SAT. In: Pruhs, K., Sohler, C. (eds.) 25th European Symposium on Algorithms (ESA). LIPIcs, vol. 87, pp. 37:1–37:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.37

  26. Friedrich, T., Rothenberger, R.: Sharpness of the satisfiability threshold for non-uniform random k-SAT. In: Kraus, S. (ed.) 28th International Joint Conference Artificial Intelligence (IJCAI), pp. 6151–6155. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/853

  27. Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure. Artif. Intell. 238, 119–134 (2016)

    Google Scholar 

  28. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: Sierra, C. (ed.) 26th International Joint Conference Artificial Intelligence (IJCAI), pp. 638–644. ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/89

  29. Hu, Y., Luo, W., Wang, J.: Community-based 3-sat formulas with a predefined solution. CoRR abs/1902.09706, http://arxiv.org/abs/1902.09706 (2019)

  30. Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm for satisfiability. Inf. Process. Lett. 43(1), 53–55 (1992)

    Google Scholar 

  31. Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF formulas in expected polynomial time. In: 17th Symposium Discrete Algorithms (SODA), pp. 454–463. ACM Press (2006). http://dl.acm.org/citation.cfm?id=1109557.1109608

  32. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT problems. In: Swartout, W.R. (ed.) 10th Conference Artificial Intelligence (AAAI), pp. 459–465. AAAI Press/The MIT Press (1992). http://www.aaai.org/Library/AAAI/1992/aaai92-071.php

  33. Omelchenko, O., Bulatov, A.A.: Satisfiability threshold for power law random 2-SAT in configuration model. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 53–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_4

    Chapter  MATH  Google Scholar 

  34. Rathi, V., Aurell, E., Rasmussen, L., Skoglund, M.: Bounds on threshold of regular random k-SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 264–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_22

    Chapter  MATH  Google Scholar 

  35. Selman, B., Kirkpatrick, S.: Critical behavior in the computational cost of satisfiability testing. Artif. Intell. 81(1–2), 273–295 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Sutton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedrich, T., Neumann, F., Rothenberger, R., Sutton, A.M. (2021). Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily. In: Li, CM., Manyà, F. (eds) Theory and Applications of Satisfiability Testing – SAT 2021. SAT 2021. Lecture Notes in Computer Science(), vol 12831. Springer, Cham. https://doi.org/10.1007/978-3-030-80223-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80223-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80222-6

  • Online ISBN: 978-3-030-80223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics