Skip to main content

Top-Down Decomposition: A Cut-Based Approach to Integral Reductions

  • Chapter
  • First Online:
Anti-Differentiation and the Calculation of Feynman Amplitudes

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

  • 673 Accesses

Abstract

In this contribution we will discuss a new approach to the derivation of linear relations between Feynman integrals. This new approach uses the mathematical object known as the intersection number to define what amounts to an inner product between Feynman integrals, which can be used to project directly unto the basis of master integrals. In particular we will discuss one perspective to this intersection-based method, which we name the top-down approach. This approach can be seen as an integral level version of the algorithms based on integrand reduction and generalized unitarity cuts, that were revolutionizing NLO scattering computations in the early 2000s.

Based on [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation (1) is brushing a lot under the rug. Besides the spurious terms discussed below, it does not include the rational term \(\mathcal {R}\) containing the contributions not captured by four-dimensional cuts, nor does it include the extraction of pentagon-terms.

  2. 2.

    We note that this step has nothing to do with intersection theory, and was done for instance in ref. [45].

  3. 3.

    We note that had we replaced the subtraction of the box-coefficient in Eq. (38) with a free subtraction term (c 1 → κ 1), this κ-fitting step would give a solution only if κ 1 = c 1, so treating κ 1 on equal footing with the other κs, is another approach to fixing the box-coefficient.

References

  1. H. Frellesvig, F. Gasparotto, S. Laporta, M.K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera, Decomposition of Feynman Integrals by Multivariate Intersection Numbers. arXiv:2008.04823

    Google Scholar 

  2. K.G. Chetyrkin, F.V. Tkachov, Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl. Phys. B192, 159–204 (1981)

    Article  Google Scholar 

  3. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A15, 5087–5159 (2000)

    MathSciNet  MATH  Google Scholar 

  4. C. Anastasiou, A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations. J. High Energy Phys. 07, 046 (2004)

    Article  Google Scholar 

  5. A.V. Smirnov, F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic. arXiv:1901.07808

    Google Scholar 

  6. A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction. arXiv:1201.4330

  7. R.N. Lee, Presenting LiteRed: A Tool for the Loop InTEgrals REDuction. arXiv:1212.2685

  8. J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral Reduction with Kira 2.0 and Finite Field Methods. arXiv:2008.06494

  9. P. Mastrolia, S. Mizera, Feynman integrals and intersection theory. J. High Energy Phys. 02, 139 (2019). arXiv:1810.03818

  10. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B435, 59–101 (1995). hep-ph/9409265

  11. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B425, 217–260 (1994). hep-ph/9403226

  12. R. Britto, F. Cachazo, B. Feng, Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills. Nucl. Phys. B 725, 275–305 (2005). hep-th/0412103

  13. G. Ossola, C.G. Papadopoulos, R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level. Nucl. Phys. B 763, 147–169 (2007). hep-ph/0609007

  14. R. Ellis, W. Giele, Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes. J. High Energy Phys. 03, 003 (2008). arXiv:0708.2398

  15. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, D-dimensional unitarity cut method. Phys. Lett. B 645, 213–216 (2007). hep-ph/0609191

  16. D. Forde, Direct extraction of one-loop integral coefficients. Phys. Rev. D 75, 125019 (2007). arXiv:0704.1835

  17. E. Nigel Glover, C. Williams, One-loop gluonic amplitudes from single unitarity cuts. J. High Energy Phys. 12, 067 (2008). arXiv:0810.2964

  18. P. Mastrolia, Double-cut of scattering amplitudes and Stokes’ theorem. Phys. Lett. B678, 246–249 (2009). arXiv:0905.2909

  19. S. Badger, Direct extraction of one loop rational terms. J. High Energy Phys. 01, 049 (2009). arXiv:0806.4600

  20. R. Britto, B. Feng, Solving for tadpole coefficients in one-loop amplitudes. Phys. Lett. B 681, 376–381 (2009). arXiv:0904.2766

  21. R. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, Masses, fermions and generalized D-dimensional unitarity. Nucl. Phys. B 822, 270–282 (2009). arXiv:0806.3467

  22. P. Mastrolia, E. Mirabella, T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion. J. High Energy Phys. 06, 095 (2012). arXiv:1203.0291 [Erratum: J. High Energy Phys. 11, 128 (2012)]

  23. P. Mastrolia, G. Ossola, On the integrand-reduction method for two-loop scattering amplitudes. J. High Energy Phys. 11, 014 (2011). arXiv:1107.6041

  24. P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, Scattering amplitudes from multivariate polynomial division. Phys. Lett. B 718, 173–177 (2012). arXiv:1205.7087

  25. D.A. Kosower, K.J. Larsen, Maximal unitarity at two loops. Phys. Rev. D85, 045017 (2012). arXiv:1108.1180

  26. S. Badger, H. Frellesvig, Y. Zhang, Hepta-cuts of two-loop scattering amplitudes. J. High Energy Phys. 04, 055 (2012). arXiv:1202.2019

  27. S. Badger, H. Frellesvig, Y. Zhang, An integrand reconstruction method for three-loop amplitudes. J. High Energy Phys. 08, 065 (2012). arXiv:1207.2976

  28. S. Badger, H. Frellesvig, Y. Zhang, A two-loop five-gluon helicity amplitude in QCD. J. High Energy Phys. 12, 045 (2013). arXiv:1310.1051

  29. Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry methods. J. High Energy Phys. 09, 042 (2012). arXiv:1205.5707

  30. M. Søgaard, Global residues and two-loop hepta-cuts. J. High Energy Phys. 09, 116 (2013). arXiv:1306.1496

  31. M. Sogaard, Y. Zhang, Massive nonplanar two-loop maximal unitarity. J. High Energy Phys. 12, 006 (2014). arXiv:1406.5044

  32. M. Søgaard, Y. Zhang, Elliptic functions and maximal unitarity. Phys. Rev. D 91(8), 081701 (2015). arXiv:1412.5577

  33. P. Mastrolia, T. Peraro, A. Primo, Adaptive Integrand Decomposition in parallel and orthogonal space. J. High Energy Phys. 08, 164 (2016). arXiv:1605.03157

  34. S. Badger, G. Mogull, A. Ochirov, D. O’Connell, A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory. J. High Energy Phys. 10, 064 (2015). arXiv:1507.08797

  35. S. Badger, G. Mogull, T. Peraro, Local integrands for two-loop all-plus Yang-Mills amplitudes. J. High Energy Phys. 08, 063 (2016). arXiv:1606.02244

  36. S. Badger, C. Brønnum-Hansen, H.B. Hartanto, T. Peraro, First look at two-loop five-gluon scattering in QCD. Phys. Rev. Lett. 120(9), 092001 (2018). arXiv:1712.02229

  37. S. Badger, C. Brønnum-Hansen, H.B. Hartanto, T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case. J. High Energy Phys. 01, 186 (2019). arXiv:1811.11699

  38. S. Badger, D. Chicherin, T. Gehrmann, G. Heinrich, J. Henn, T. Peraro, P. Wasser, Y. Zhang, S. Zoia, Analytic form of the full two-loop five-gluon all-plus helicity amplitude. Phys. Rev. Lett. 123(7), 071601 (2019). arXiv:1905.03733

  39. H. Ita, Two-loop integrand decomposition into master integrals and surface terms. Phys. Rev. D 94(11), 116015 (2016). arXiv:1510.05626

  40. S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, M. Zeng, Two-loop four-gluon amplitudes from numerical unitarity. Phys. Rev. Lett. 119(14), 142001 (2017). arXiv:1703.05273

  41. S. Abreu, F. Febres Cordero, H. Ita, B. Page, M. Zeng, Planar two-loop five-gluon amplitudes from numerical unitarity. Phys. Rev. D 97(11), 116014 (2018). arXiv:1712.03946

  42. S. Abreu, F. Febres Cordero, H. Ita, B. Page, V. Sotnikov, Planar two-loop five-parton amplitudes from numerical unitarity. J. High Energy Phys. 11, 116 (2018). arXiv:1809.09067

  43. S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page, V. Sotnikov, Analytic form of the planar two-loop five-parton scattering amplitudes in QCD. J. High Energy Phys. 05, 084 (2019). arXiv:1904.00945

  44. H.A. Frellesvig, Generalized unitarity cuts and integrand reduction at higher loop orders. Ph.D. thesis, Copenhagen U., 2014

    Google Scholar 

  45. P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application. Nucl. Instrum. Meth. A389, 347–349 (1997). hep-ph/9611449

  46. R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity. Nucl. Phys. Proc. Suppl. 205–206, 135–140 (2010). arXiv:1007.2256

  47. A.G. Grozin, Integration by parts: an introduction. Int. J. Mod. Phys. A26, 2807–2854 (2011). arXiv:1104.3993

  48. K.J. Larsen, Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry. Phys. Rev. D93(4), 041701 (2016). arXiv:1511.01071

  49. J. Bosma, K.J. Larsen, Y. Zhang, Differential Equations for Loop Integrals in Baikov Representation. arXiv:1712.03760

  50. H. Frellesvig, C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation. J. High Energy Phys. 04, 083 (2017). arXiv:1701.07356

  51. M. Harley, F. Moriello, R.M. Schabinger, Baikov-Lee representations of cut Feynman integrals. J. High Energy Phys. 06, 049 (2017). arXiv:1705.03478

  52. H. Frellesvig, F. Gasparotto, S. Laporta, M.K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera, Decomposition of Feynman integrals on the maximal cut by intersection numbers. J. High Energy Phys. 05, 153 (2019). arXiv:1901.11510

  53. K. Cho, K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s period relations I. Nagoya Math. J. 139, 67–86 (1995)

    Article  MathSciNet  Google Scholar 

  54. K. Matsumoto, Intersection numbers for logarithmic k-forms. Osaka J. Math. 35(4), 873–893 (1998)

    MathSciNet  MATH  Google Scholar 

  55. S. Mizera, Scattering amplitudes from intersection theory. Phys. Rev. Lett. 120(14), 141602 (2018). arXiv:1711.00469

  56. S. Mizera, Aspects of scattering amplitudes and moduli space localization. Ph.D. thesis, Princeton, Inst. Advanced Study, 2020. arXiv:1906.02099

  57. H. Frellesvig, F. Gasparotto, M.K. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera, Vector space of Feynman integrals and multivariate intersection numbers. Phys. Rev. Lett. 123(20), 201602 (2019). arXiv:1907.02000

  58. A.V. Smirnov, FIRE5: a C++ implementation of Feynman integral reduction. Comput. Phys. Commun. 189, 182–191 (2015). arXiv:1408.2372

  59. S. Weinzierl, On the Computation of Intersection Numbers for Twisted Cocycles. arXiv:2002.01930

  60. K. Matsumoto, Relative Twisted Homology and Cohomology Groups Associated with Lauricella’s F D. arXiv:1804.00366

  61. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, J. Trnka, Local integrals for planar scattering amplitudes. J. High Energy Phys. 06, 125 (2012). arXiv:1012.6032

  62. J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013). arXiv:1304.1806

  63. S. Mizera, A. Pokraka, From infinity to four dimensions: higher residue pairings and Feynman integrals. J. High Energy Phys. 02, 159 (2020). arXiv:1910.11852

  64. J. Chen, X. Xu, L.L. Yang, Constructing Canonical Feynman Integrals with Intersection Theory. arXiv:2008.03045

  65. S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew, From positive geometries to a coaction on hypergeometric functions. J. High Energy Phys. 02, 122 (2020). arXiv:1910.08358

Download references

Acknowledgements

I would like to thank my collaborators on the work presented here, Federico Gasparotto, Stefano Laporta, Manoj K. Mandal, Pierpaolo Mastrolia, Luca Mattiazzi, and Sebastian Mizera. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 847523 ‘INTERACTIONS’. The work of HF has been partially supported by a Carlsberg Foundation Reintegration Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hjalte Frellesvig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frellesvig, H. (2021). Top-Down Decomposition: A Cut-Based Approach to Integral Reductions. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics