Skip to main content

Evolutionary Computation Approach for Spatial Workload Balancing

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 284))

  • 1981 Accesses

Abstract

The growing demand for Geographic Information Systems (GIS) calls for high computation reliability to handle vast and complex spatial data processing tasks. A better parallel computing scheme should ensure balanced workload at different data processors to ensure optimal use of computing resources and minimise execution times, which poses more challenges with spatial data due to the nature of having spatial correlations and uneven distributions. In this paper, we propose a spatial clustering approach for workload balance, by using an evolutionary computation method that considers the nature of spatial data, to increase the computation performance for processing GIS polygon-based maps with massive number of vertices and complex shapes. To evaluate our proposed approach, We proposed two different experimental approaches for comparing our results: (i) Non–merging based experiment, and (ii) merging based experiment. The results demonstrated the advantage of the proposed spatial clustering approach in real GIS map based partitioning scenarios. The advantages and limitations of the proposed approach are discussed and further research directions are highlighted toward a development work by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.esri.com/content/dam/esrisites/en-us/media/pdf/teach-with-gis/raster-faster.pdf.

  2. 2.

    http://www.esri.com.

  3. 3.

    http://www.maplibrary.org/library/stacks/Africa/index.htm.

References

  1. GIS (Geographic Information System) Overview. https://www.esri.com/en-us/what-is-gis/overview

  2. Aji, A., et al.: Hadoop-GIS: a high performance spatial data warehousing system over MapReduce. In: The 39th International Conference on Very Large Data Bases, vol. 6, pp. 1009–1020 (2013)

    Google Scholar 

  3. Araujo Neto, A.C., Coelho da Silva, T.L., de Farias, V.A.E., Macêdo, J.A.F., de Castro Machado, J.: G2P: a partitioning approach for processing DBSCAN with MapReduce. In: Web and Wireless Geographical Information Systems, pp. 191-d-202. Springer, Cham (2015)

    Google Scholar 

  4. Bação, F., Lobo, V., Painho, M.: Applying genetic algorithms to zone design. Soft. Comput. 9(5), 341–348 (2005)

    Article  Google Scholar 

  5. Barua, H.B., Das, D.K., Sarmah, S.: A density based clustering technique for large spatial data using polygon approach. J. Comput. Eng. 3(6), 1–9 (2012)

    Google Scholar 

  6. Boobalan, M.P., Lopez, D., Gao, X.: Graph clustering using k-neighbourhood attribute structural similarity. Appl. Soft Comput. 47, 216–223 (2016)

    Article  Google Scholar 

  7. Cao, Z., Wang, S., Forestier, G., Puissant, A., Eick, C.F.: Analyzing the composition of cities using spatial clustering. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, pp. 141–148 (2013)

    Google Scholar 

  8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: the 6th Conference on Symposium on Opearting Systems Design and Implementation, pp. 1–13. Google, Inc. (2004)

    Google Scholar 

  9. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in SpatialHadoop. Proc. VLDB Endow. 8(12), 1602–1605 (2015)

    Article  Google Scholar 

  10. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial data. In: The 31st International Conference on Data Engineering, pp. 1352–1363 (2015)

    Google Scholar 

  11. Ericsson, A., WCDMA, R.: Clustering and polygon merging algorithms for fingerprinting positioning in LTE. In: 5th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–10 (2011)

    Google Scholar 

  12. ESRI: ESRI shapefile technical description. Technical report, Environmental Systems Research Institute Inc, 380 New York Street, Redlands, CA 92373–8100, USA (1998)

    Google Scholar 

  13. Fu, Y.X., Zhao, W.Z., Ma, H.F.: Research on parallel DBSCAN algorithm design based on MapReduce. In: Advanced Measurement and Test, Advanced Materials Research, vol. 301, pp. 1133–1138. Trans Tech Publications (2011)

    Google Scholar 

  14. Gu, X., Angelov, P.P., Príncipe, J.C.: A method for autonomous data partitioning. Inf. Sci. 460–461, 65–82 (2018)

    Article  Google Scholar 

  15. Guest, O., Kanayet, F.J., Love, B.C.: Gerrymandering and computational redistricting. J. Comput. Soc. Sci. 2(2), 119–131 (2019). https://doi.org/10.1007/s42001-019-00053-9

    Article  Google Scholar 

  16. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: The partition cost model for load balancing in MapReduce, chap. 5, pp. 371–387. Springer, New York (2012)

    Google Scholar 

  17. Jasim, M., Asadi, T.A.: New graph mining algorithm for vector GIS systems. In: 8th International Conference on Computing Technology and Information Management (NCM and ICNIT), vol. 1, pp. 335–338 (2012)

    Google Scholar 

  18. Ji, G., Zhang, L.: A spatial polygon objects clustering algorithm based on topological relations for GML data. In: 2009 International Conference on Information Engineering and Computer Science, pp. 1–4 (2009)

    Google Scholar 

  19. Joshi, D., Samal, A., Soh, L.K.: A dissimilarity function for clustering geospatial polygons. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 384–387. ACM, New York (2009)

    Google Scholar 

  20. Joshi, D., Samal, A.K., Soh, L.K.: Density-based clustering of polygons. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 171–178 (2009)

    Google Scholar 

  21. Joshi, D., Soh, L.K., Samal, A.: Redistricting using heuristic-based polygonal clustering. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 830–835 (2009)

    Google Scholar 

  22. Joshi, D., Soh, L.K., Samal, A.: Redistricting using constrained polygonal clustering. IEEE Trans. Knowl. Data Eng. 24(11), 2065–2079 (2012)

    Article  Google Scholar 

  23. Kisore, N.R., Koteswaraiah, C.B.: Improving ATM coverage area using density based clustering algorithm and voronoi diagrams. Inf. Sci. 376, 1–20 (2017)

    Article  Google Scholar 

  24. Levin, H.A., Friedler, S.A.: Automated congressional redistricting. J. Exp. Algorithmics 24, 1–24 (2019)

    Article  MathSciNet  Google Scholar 

  25. Li, X., Li, W., Anselin, L., Rey, S., Koschinsky, J.: A MapReduce algorithm to create contiguity weights for spatial analysis of big data. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 50–53. ACM, New York (2014)

    Google Scholar 

  26. Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf. Sci. 450, 200–226 (2018)

    Article  MathSciNet  Google Scholar 

  27. Longley, P.A., Goodchild, M., Maguire, D.J., Rhind, D.W.: Geographic Information Systems and Science, 3rd edn. Wiley, Hoboken (2011)

    Google Scholar 

  28. Photis, Y.N.: Redefinition of the Greek electoral districts through the application of a region-building algorithm. MPRA Paper 42398, University Library of Munich, Germany (2012)

    Google Scholar 

  29. Puri, S., Agarwal, D., He, X., Prasad, S.K.: MapReduce algorithms for GIS polygonal overlay processing. In: 2013 IEEE International Symposium on Parallel Distributed Processing, Workshops and PHD Forum, pp. 1009–1016 (2013)

    Google Scholar 

  30. Qiu, Q., Yao, X., Chen, C., Liu, Y., Fang, J.: A spatial data partitioning and merging method for parallel vector spatial analysis. In: 2015 23rd International Conference on Geoinformatics, pp. 1–5 (2015)

    Google Scholar 

  31. Schutzman, Z.: Trade-offs in fair redistricting. In: AAAI/ACM Conference on AI, Ethics, and Society, pp. 159–165 (2020)

    Google Scholar 

  32. Shuliang, W., Gangyi, D., Ming, Z.: Big spatial data mining. In: IEEE International Conference on Big Data, pp. 13–21 (2013)

    Google Scholar 

  33. Wang, S., Chen, C.S., Rinsurongkawong, V., Akdag, F., Eick, C.F.: A polygon-based methodology for mining related spatial datasets. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Data Mining for Geoinformatics, pp. 1–8 (2010)

    Google Scholar 

  34. Wang, S., Eick, C.F.: A polygon-based clustering and analysis framework for mining spatial datasets. GeoInformatica 18(3), 569–594 (2013). https://doi.org/10.1007/s10707-013-0190-2

    Article  Google Scholar 

  35. Wang, W., Du, S., Guo, Z., Luo, L.: Polygonal clustering analysis using multilevel graph-partition. Trans. GIS 19(5), 716–736 (2015)

    Article  Google Scholar 

  36. Wei, H., et al.: A kd tree-based algorithm to parallelize kriging interpolation of big spatial data. GISci. Remote Sens. 52(1), 40–57 (2015)

    Article  Google Scholar 

  37. Zhang, J., Samal, A., Soh, L.: Polygon-based spatial clustering. In: The 8th International Conference on GeoComputation, pp. 1–5 (2005)

    Google Scholar 

  38. Zhang, X., Huang, B., Tay, R.: Estimating spatial logistic model: a deterministic approach or a heuristic approach? Inf. Sci. 330, 358–369 (2016). SI Visual Info Communication

    Article  Google Scholar 

  39. Zhao, L., Chen, L., Ranjan, R., Choo, K.-K.R., He, J.: Geographical information system parallelization for spatial big data processing: a review. Clust. Comput. 19(1), 139–152 (2015). https://doi.org/10.1007/s10586-015-0512-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abubahia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abubahia, A., Bader-El-Den, M., Haig, E. (2021). Evolutionary Computation Approach for Spatial Workload Balancing. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_38

Download citation

Publish with us

Policies and ethics