Skip to main content

Percutaneous Cement Augmentation for Malignant Lesions: Metastases and Multiple Myeloma

  • Chapter
  • First Online:
Image Guided Interventions of the Spine

Abstract

Spinal compression fractures secondary to metastatic tumors or multiple myeloma can result in debilitating mechanical back pain. Percutaneous cement augmentation is a minimally invasive technique that can provide spinal stability, as well as pain relief. This is performed through percutaneous cannulation of the fractured vertebral body (VB), most commonly through a posterior approach, followed by injection of cement. Various types of bone cement have been used for augmentation, with polymethyl methacrylate (PMMA) being the most commonly used. Indications for cement augmentation include an acute or non-healed compression fracture that corresponds to a site of mechanical back pain. Anatomical considerations must be taken into account to ensure the VB may be safely cannulated and that cement can be applied with a low risk of extravasation. The risk of extravasation has been related to the type of augmentation performed, depending on whether cement is directly injected into the VB after cannulation or following cavity creation with a balloon bone tamp or navigating osteotome. The most common complication encountered is cement extravasation outside of the VB. Although the vast majority of extravasation events are asymptomatic, the most potentially concerning incidences are extravasation posteriorly into the spinal canal or intravascular extravasation, which have resulted in rare instances of pulmonary or cardiac embolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res B Appl Biomater. 2006;76(2):456–68.

    Article  Google Scholar 

  2. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6 Suppl):305S–16S.

    Article  Google Scholar 

  3. Bae H, Shen M, Maurer P, Peppelman W, Beutler W, Linovitz R, et al. Clinical experience using Cortoss for treating vertebral compression fractures with vertebroplasty and kyphoplasty: twenty four-month follow-up. Spine (Phila Pa 1976). 2010;35(20):E1030–6.

    Article  Google Scholar 

  4. Bae H, Hatten HP Jr, Linovitz R, Tahernia AD, Schaufele MK, McCollom V, et al. A prospective randomized FDA-IDE trial comparing Cortoss with PMMA for vertebroplasty: a comparative effectiveness research study with 24-month follow-up. Spine (Phila Pa 1976). 2012;37(7):544–50.

    Article  Google Scholar 

  5. Turner TM, Urban RM, Singh K, Hall DJ, Renner SM, Lim TH, et al. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Spine J. 2008;8(3):482–7.

    Article  Google Scholar 

  6. He Z, Zhai Q, Hu M, Cao C, Wang J, Yang H, et al. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J Orthop Translat. 2015;3(1):1–11.

    Article  CAS  Google Scholar 

  7. Dudeney S, Lieberman IH, Reinhardt MK, Hussein M. Kyphoplasty in the treatment of osteolytic vertebral compression fractures as a result of multiple myeloma. J Clin Oncol. 2002;20(9):2382–7.

    Article  CAS  Google Scholar 

  8. Kyriakou C, Molloy S, Vrionis F, Alberico R, Bastian L, Zonder JA, et al. The role of cement augmentation with percutaneous vertebroplasty and balloon kyphoplasty for the treatment of vertebral compression fractures in multiple myeloma: a consensus statement from the International Myeloma Working Group (IMWG). Blood Cancer J. 2019;9(3):27.

    Article  Google Scholar 

  9. Stangenberg M, Viezens L, Eicker SO, Mohme M, Mende KC, Dreimann M. Cervical vertebroplasty for osteolytic metastases as a minimally invasive therapeutic option in oncological surgery: outcome in 14 cases. Neurosurg Focus. 2017;43(2):E3.

    Article  Google Scholar 

  10. Barzilai O, McLaughlin L, Amato MK, Reiner AS, Ogilvie SQ, Lis E, et al. Minimal access surgery for spinal metastases: prospective evaluation of a treatment algorithm using patient-reported outcomes. World Neurosurg. 2018;120:e889–901.

    Article  Google Scholar 

  11. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010;35(22):E1221–9.

    Article  Google Scholar 

  12. Ivanishvili Z, Fourney DR. Incorporating the Spine Instability Neoplastic Score into a treatment strategy for spinal metastasis: LMNOP. Global Spine J. 2014;4(2):129–36.

    Article  Google Scholar 

  13. Hentschel SJ, Burton AW, Fourney DR, Rhines LD, Mendel E. Percutaneous vertebroplasty and kyphoplasty performed at a cancer center: refuting proposed contraindications. J Neurosurg Spine. 2005;2(4):436–40.

    Article  Google Scholar 

  14. Lieberman IH, Dudeney S, Reinhardt MK, Bell G. Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine (Phila Pa 1976). 2001;26(14):1631–8.

    Article  CAS  Google Scholar 

  15. Chang X, Lv YF, Chen B, Li HY, Han XB, Yang K, et al. Vertebroplasty versus kyphoplasty in osteoporotic vertebral compression fracture: a meta-analysis of prospective comparative studies. Int Orthop. 2015;39(3):491–500.

    Article  Google Scholar 

  16. Fritzell P, Ohlin A, Borgstrom F. Cost-effectiveness of balloon kyphoplasty versus standard medical treatment in patients with osteoporotic vertebral compression fracture: a Swedish multicenter randomized controlled trial with 2-year follow-up. Spine (Phila Pa 1976). 2011;36(26):2243–51.

    Article  Google Scholar 

  17. Cloft HJ, Jensen ME. Kyphoplasty: an assessment of a new technology. AJNR Am J Neuroradiol. 2007;28(2):200–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Frankel BM, Monroe T, Wang C. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty. Spine J. 2007;7(5):575–82.

    Article  Google Scholar 

  19. Vallejo R, Benyamin R, Floyd B, Casto JM, Joseph NJ, Mekhail N. Percutaneous cement injection into a created cavity for the treatment of vertebral body fracture: preliminary results of a new vertebroplasty technique. Clin J Pain. 2006;22(2):182–9.

    Article  Google Scholar 

  20. Dalton BE, Kohm AC, Miller LE, Block JE, Poser RD. Radiofrequency-targeted vertebral augmentation versus traditional balloon kyphoplasty: radiographic and morphologic outcomes of an ex vivo biomechanical pilot study. Clin Interv Aging. 2012;7:525–31.

    PubMed  PubMed Central  Google Scholar 

  21. Georgy BA. Comparison between radiofrequency targeted vertebral augmentation and balloon kyphoplasty in the treatment of vertebral compression fractures: addressing factors that affect cement extravasation and distribution. Pain Physician. 2013;16(5):E513–8.

    Article  Google Scholar 

  22. Feng L, Shen JM, Feng C, Chen J, Wu Y. Comparison of radiofrequency kyphoplasty (RFK) and balloon kyphoplasty (BKP) in the treatment of vertebral compression fractures: a meta-analysis. Medicine (Baltimore). 2017;96(25):e7150.

    Article  Google Scholar 

  23. Erdem E, Akdol S, Amole A, Fryar K, Eberle RW. Radiofrequency-targeted vertebral augmentation for the treatment of vertebral compression fractures as a result of multiple myeloma. Spine (Phila Pa 1976). 2013;38(15):1275–81.

    Article  Google Scholar 

  24. Wang P, Li J, Song Z, Peng Z, Wang G. Utilization of the directional balloon technique to improve the effectiveness of percutaneous kyphoplasty in the treatment of osteoporotic vertebral compression fractures and reduction of bone cement leakage. Medicine (Baltimore). 2019;98(19):e15272.

    Article  Google Scholar 

  25. Noriega DC, Ramajo RH, Lite IS, Toribio B, Corredera R, Ardura F, et al. Safety and clinical performance of kyphoplasty and SpineJack((R)) procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study. Osteoporos Int. 2016;27(6):2047–55.

    Article  CAS  Google Scholar 

  26. Noriega D, Marcia S, Theumann N, Blondel B, Simon A, Hassel F, et al. A prospective, international, randomized, noninferiority study comparing an implantable titanium vertebral augmentation device versus balloon kyphoplasty in the reduction of vertebral compression fractures (SAKOS study). Spine J. 2019;19(11):1782–95.

    Article  Google Scholar 

  27. Olivarez LM, Dipp JM, Escamilla RF, Bajares G, Perez A, Stubbs HA, et al. Vertebral augmentation treatment of painful osteoporotic compression fractures with the Kiva VCF treatment system. SAS J. 2011;5(4):114–9.

    Article  Google Scholar 

  28. Tutton SM, Pflugmacher R, Davidian M, Beall DP, Facchini FR, Garfin SR. KAST Study: the Kiva system as a vertebral augmentation treatment-a safety and effectiveness trial: a randomized, noninferiority trial comparing the Kiva system with balloon kyphoplasty in treatment of osteoporotic vertebral compression fractures. Spine (Phila Pa 1976). 2015;40(12):865–75.

    Article  Google Scholar 

  29. Lee MJ, Dumonski M, Cahill P, Stanley T, Park D, Singh K. Percutaneous treatment of vertebral compression fractures: a meta-analysis of complications. Spine (Phila Pa 1976). 2009;34(11):1228–32.

    Article  Google Scholar 

  30. Shi HB, Suh DC, Lee HK, Lim SM, Kim DH, Choi CG, et al. Preoperative transarterial embolization of spinal tumor: embolization techniques and results. AJNR Am J Neuroradiol. 1999;20(10):2009–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorensen ST, Kirkegaard AO, Carreon L, Rousing R, Andersen MO. Vertebroplasty or kyphoplasty as palliative treatment for cancer-related vertebral compression fractures: a systematic review. Spine J. 2019;19(6):1067–75.

    Article  Google Scholar 

  32. Corcos G, Dbjay J, Mastier C, Leon S, Auperin A, De Baere T, et al. Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective evaluation of incidence and risk factors. Spine (Phila Pa 1976). 2014;39(5):E332–8.

    Article  Google Scholar 

  33. Krueger A, Bliemel C, Zettl R, Ruchholtz S. Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur Spine J. 2009;18(9):1257–65.

    Article  Google Scholar 

  34. Wang LJ, Yang HL, Shi YX, Jiang WM, Chen L. Pulmonary cement embolism associated with percutaneous vertebroplasty or kyphoplasty: a systematic review. Orthop Surg. 2012;4(3):182–9.

    Article  Google Scholar 

  35. Gosev I, Nascimben L, Huang PH, Mauri L, Steigner M, Mizuguchi A, et al. Right ventricular perforation and pulmonary embolism with polymethylmethacrylate cement after percutaneous kyphoplasty. Circulation. 2013;127(11):1251–3.

    Article  Google Scholar 

  36. Zhang H, Xu C, Zhang T, Gao Z, Zhang T. Does percutaneous vertebroplasty or balloon kyphoplasty for osteoporotic vertebral compression fractures increase the incidence of new vertebral fractures? A meta-analysis. Pain Physician. 2017;20(1):E13–28.

    Article  Google Scholar 

  37. Bae JS, Park JH, Kim KJ, Kim HS, Jang IT. Analysis of risk factors for secondary new vertebral compression fracture following percutaneous vertebroplasty in patients with osteoporosis. World Neurosurg. 2017;99:387–94.

    Article  Google Scholar 

  38. Berenson J, Pflugmacher R, Jarzem P, Zonder J, Schechtman K, Tillman JB, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. C. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J.K.C., Kushchayev, S.V., Arrington, J.A. (2021). Percutaneous Cement Augmentation for Malignant Lesions: Metastases and Multiple Myeloma. In: Khan, M., Kushchayev, S.V., Faro, S.H. (eds) Image Guided Interventions of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-80079-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80079-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80078-9

  • Online ISBN: 978-3-030-80079-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics