Skip to main content

Abstract

Preterm birth survivors are at a higher risk of faltering growth and developmental disabilities compared to their term counterparts. Appropriate nutrition is essential for the growth of preterm infants. Early administration of enteral nutrition (EN) in preterm newborns reduces the risk of adverse health outcomes and improves cognition in adulthood. Infants with birth body weight less than 1500 g develop a postnatal growth failure in the vast majority of the cases. During the early adaptive period of life (from birth to approximately day 7), hemodynamic instability associated with immaturity of the gastrointestinal tract limits the use of enteral nutrition. In this period, parenteral nutrition (PN) represents the main route of administration of nutrients. However, EN should be started as soon as possible as minimal enteral feeding (10–30 ml/kg/d) and progressively increased (by 20–30 ml/kg/d) until full enteral feeding is reached (120 kcal/kg/d). In the stable growing period, adequate nutritional requirements, including macronutrients and micronutrients, should be fully achieved by EN. Fortified human milk is considered the best source of nutrition for preterm babies. In routine clinical practice, supplementation of human milk (HM) with macro- and micronutrients is essential to meet nutritional requirements. Monitoring the growth velocity is crucial to assess the efficacy of EN. Counseling and a regular follow-up after discharge to ensure adequate growth are advisable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kinney MV, Rhoda NR. Understanding the causes of preterm birth: solutions depend on context. Lancet Glob Health. 2019;7(8):e1000–1. https://doi.org/10.1016/S2214-109X(19)30281-5.

    Article  Google Scholar 

  2. Saigal S, Morrison K, Schmidt LA. Health, wealth and achievements of former very premature infants in adult life. Semin Fetal Neonatal Med. 2020;25(3):101107. https://doi.org/10.1016/j.siny.2020.101107. Epub 2020 Apr 6.

    Article  Google Scholar 

  3. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4):1253–61. https://doi.org/10.1542/peds.2005-1368.

    Article  Google Scholar 

  4. Kumar RK, Singhal A, Vaidya U, Banerjee S, Anwar F, Rao S. Optimizing nutrition in preterm low birth weight infants-consensus summary. Front Nutr. 2017;4:20. Published 2017 May 26. https://doi.org/10.3389/fnut.2017.00020.

    Article  Google Scholar 

  5. De Curtis M, Rigo J. The nutrition of preterm infants. Early Hum Dev. 2012;88:S5–7.

    Google Scholar 

  6. Berni Canani R, Passariello A, Buccigrossi V, Terrin G, Guarino A. The nutritional modulation of the evolving intestine. J Clin Gastroenterol. 2008;42(Suppl 3):S197–200.

    Google Scholar 

  7. Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.

    CAS  Google Scholar 

  8. Senterre T. Practice of enteral nutrition in very low birth weight and extremely low birth weight infants. World Rev Nutr Diet. 2014;110:201–14.

    Google Scholar 

  9. Moore TA, Wilson ME. Feeding intolerance: a concept analysis. Adv Neonatal Care. 2011;11:149–54. https://doi.org/10.1097/ANC.0b013e31821ba28e.

    Google Scholar 

  10. Karagianni P, Briana DD, Mitsiakos G, Elias A, Theodoridis T, Chatziioannidis E, Kyriakidou M, Nikolaidis N. Early versus delayed minimal enteral feeding and risk for necrotizing enterocolitis in preterm growth-restricted infants with abnormal antenatal Doppler results. Am J Perinatol. 2010;27:367–73.

    Google Scholar 

  11. Morgan J, Bombell S, McGuire W. Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2013;3:CD000504.

    Google Scholar 

  12. Terrin G, Passariello A, Canani RB, et al. Minimal enteral feeding reduces the risk of sepsis in feed-intolerant very low birth weight newborns. Acta Paediatr. 2009;98:31–5.

    Google Scholar 

  13. Salvia G, Guarino A, Terrin G, Cascioli C, Paludetto R, Indrio F, Lega L, Fanaro S, Stronati M, Corvaglia L, Tagliabue P, De Curtis M; Working Group on Neonatal Gastroenterology of the Italian Society of Pediatric Gastroenterology, Hepatology and Nutrition. Neonatal onset intestinal failure: an Italian Multicenter Study. J Pediatr. 2008;153(5):674–6, 676.e1–2. https://doi.org/10.1016/j.jpeds.2008.05.017. Epub 2008 June 27.

  14. SIFT Investigators Group. Early enteral feeding strategies for very preterm infants: current evidence from Cochrane reviews. Arch Dis Child Fetal Neonatal Ed. 2013;98:F470–2.

    Google Scholar 

  15. Battersby C, Santhalingam T, Costeloe K, Modi N. Incidence of neonatal necrotising enterocolitis in high-income countries: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F182–9. https://doi.org/10.1136/archdischild-2017-313880.

    Article  Google Scholar 

  16. Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2013;3:CD001241.

    Google Scholar 

  17. De Curtis M, Rigo J. Extrauterine growth restriction in very-low-birthweight infants. Acta Paediatr. 2004;93:1563–8.

    Google Scholar 

  18. Embleton ND. Optimal protein and energy intakes in preterm infants. Early Hum Dev. 2007;83(12):831–7. https://doi.org/10.1016/j.earlhumdev.2007.10.001.

    Article  CAS  Google Scholar 

  19. Liotto N, Amato O, Piemontese P, et al. Protein intakes during weaning from parenteral nutrition drive growth gain and body composition in very low birth weight preterm infants. Nutrients. 2020;12(5):1298. Published 2020 May 2. https://doi.org/10.3390/nu12051298.

    Article  CAS  Google Scholar 

  20. Abiramalatha T, Thanigainathan S, Ninan B. Routine monitoring of gastric residual for prevention of necrotising enterocolitis in preterm infants [published online ahead of print, 2019 July 9]. Cochrane Database Syst Rev. 2019;7(7):CD012937. https://doi.org/10.1002/14651858.CD012937.pub2.

    Article  Google Scholar 

  21. Tume LN, Woolfall K, Arch B, et al. Routine gastric residual volume measurement to guide enteral feeding in mechanically ventilated infants and children: the GASTRIC feasibility study. Health Technol Assess. 2020;24(23):1–120. https://doi.org/10.3310/hta24230.

    Article  Google Scholar 

  22. Toce SS, Keenan WJ, Homan SM. Enteral feeding in very-low-birth-weight infants. A comparison of two nasogastric methods. Am J Dis Child. 1987;141(4):439–44. https://doi.org/10.1001/archpedi.1987.04460040097025.

    Article  CAS  Google Scholar 

  23. Akintorin SM, Kamat M, Pildes RS, Kling P, Andes S, Hill J, Pyati S. A prospective randomized trial of feeding methods in very low birth weight infants. Pediatrics. 1997;100(4):E4. https://doi.org/10.1542/peds.100.4.e4.

    Article  CAS  Google Scholar 

  24. Klingenberg C, Embleton ND, Jacobs SE, O’Connell LA, Kuschel CA. Enteral feeding practices in very preterm infants: an international survey. Arch Dis Child Fetal Neonatal Ed. 2012;97(1):F56–61. https://doi.org/10.1136/adc.2010.204123. Epub 2011 Aug 18.

    Article  Google Scholar 

  25. Premji SS, Chessell L. Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1500 grams. Cochrane Database Syst Rev. 2011;2011(11):CD001819. https://doi.org/10.1002/14651858.CD001819.pub2. PMID: 22071802; PMCID: PMC7066504.

    Article  Google Scholar 

  26. De Curtis M, McIntosh N, Ventura V, Brooke O. Effect of nonnutritive sucking on nutrient retention in preterm infants. J Pediatr. 1986;109(5):888–90. https://doi.org/10.1016/s0022-3476(86)80720-x.

    Article  Google Scholar 

  27. McGuire W, McEwan P. Transpyloric versus gastric tube feeding for preterm infants. Cochrane Database Syst Rev. 2002; (3):CD003487. Update in: Cochrane Database Syst Rev. 2007;(3):CD003487.

    Google Scholar 

  28. Lucchini R, Bizzarri B, Giampietro S, De Curtis M. Feeding intolerance in preterm infants. How to understand the warning signs. J Matern Fetal Neonatal Med. 2011;24(Suppl 1):72–4.

    Google Scholar 

  29. Ziegler EE, O’Donnell AM, Nelson SE, Fomon SJ. Body composition of the reference fetus. Growth. 1976;40(4):329–41.

    CAS  Google Scholar 

  30. Sandström O, Lönnerdal B, Graverholt G, Hernell O. Effects of alpha-lactalbumin-enriched formula containing different concentrations of glycomacropeptide on infant nutrition. Am J Clin Nutr. 2008;87(4):921–8.

    Google Scholar 

  31. Rigo J. Protein, amino acid and other nitrogen compounds. In: Tsang RC, Uauy R, Koletzko B, Zlotkin SH, editors. Nutritional of the preterm infant. Cincinnati: Digital Education Publishing, Inc; 2005. p. 45–80.

    Google Scholar 

  32. Fenton TR, Premji SS, Al-Wassia H, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2014;4:CD003959.

    Google Scholar 

  33. Embleton ND, Cooke RJ. Protein requirements in preterm infants: effect of different levels of protein intake on growth and body composition. Pediatr Res. 2005;58:855–60.

    CAS  Google Scholar 

  34. Young L, Morgan J, McCormick FM, McGuire W. Nutrient-enriched formula versus standard term formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12(12):CD004696.

    Google Scholar 

  35. Goldman HI, Goldman JS, Kaufman I, Liebman OB. Late effects of early dietary protein intake on low-birth-weight infants. J Pediatr. 1974;85:764–9.

    CAS  Google Scholar 

  36. Rigo J, Senterre J. Nutritional needs of premature infants: current issues. J Pediatr. 2006;149:s80–8.

    CAS  Google Scholar 

  37. García-Lara NR, Vieco DE, De la Cruz-Bértolo J, Lora-Pablos D, Velasco NU, Pallás-Alonso CR. Effect of holder pasteurization and frozen storage on macronutrients and energy content of breast milk. J Pediatr Gastroenterol Nutr. 2013;57(3):377–82.

    Google Scholar 

  38. Rigo J, Boehm G, Georgi G, et al. An infant formula free of glycomacropeptide prevents hyperthreoninemia in formula-fed preterm infants. J Pediatr Gastroenterol Nutr. 2001;32:127–30.

    CAS  Google Scholar 

  39. Mihatsh WA, Hogel J, Pohlandt F. Hydrolysed protein accelerates the gastrointestinal transport of formula in preterm infants. Acta Paediatr. 2001;90:196–8.

    Google Scholar 

  40. Michaelsen KF, Greer FR. Protein needs early in life and long-term health. Am J Clin Nutr. 2014;99(3):718S–22S. https://doi.org/10.3945/ajcn.113.072603. Epub 2014 Jan 22.

    Article  CAS  Google Scholar 

  41. Ziegler EE. Meeting the nutritional needs of the low-birth-weight infant. Ann Nutr Metab. 2011;58(Suppl 1):8–18. https://doi.org/10.1159/000323381. Epub 2011 Jun 21. Review.

    Article  CAS  Google Scholar 

  42. Denne SC. Protein and energy requirements in preterm infants. Semin Neonatol. 2001;6:377–82.

    CAS  Google Scholar 

  43. De Curtis M, Brooke OG. Energy and nitrogen balances in very low birth weight infants. Arch Dis Child. 1987;62:830–2.

    Google Scholar 

  44. Koletzko B, Poindexter B, Uauy R. Recommended nutrient intake levels for stable, fully enterally fed very low birth weight infants. World Rev Nutr Diet. 2014;110:297–9.

    Google Scholar 

  45. Koletzko BV, Innis SM. Lipids. In: Tsang RC, editor. Nutritional needs of the preterm infant. Williams & Wilkins; 2003.

    Google Scholar 

  46. Bhatia J. Human milk and the premature infant. Ann Nutr Metab. 2013;62(Suppl 3):8–14. https://doi.org/10.1159/000351537. Epub 2013 Aug 19. Review. PubMed PMID: 23970211.

    Article  CAS  Google Scholar 

  47. Innis SM. The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci. 2000;22:474–80.

    CAS  Google Scholar 

  48. Koletzko B, Agostoni C, Carlson SE, et al. Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr. 2001;90:460–4.

    CAS  Google Scholar 

  49. Lapillonne A, Groh-Wargo S, Gonzalez CH, Uauy R. Lipid needs of preterm infants: updated recommendations. J Pediatr. 2013;162(3 Suppl):S37–47. https://doi.org/10.1016/j.jpeds.2012.11.052.

    Article  CAS  Google Scholar 

  50. Verger J. Nutrition in the Pediatric population in the intensive care unit. Crit Care Nurs Clin North Am. 2014;26(2):199–215. https://doi.org/10.1016/j.ccell.2014.02.005. Review.

    Article  Google Scholar 

  51. Brand Miller J, McVeagh P. Human milk oligosaccharides: 130 reasons to breast-feed. Br J Nutr. 1999;82:333–5.

    Google Scholar 

  52. Siegel M, Kranz B, Lebenthal E. Effect of fat and carbohydrate composition on the gastric emptying of isocaloric feedings in premature infants. Gastroenterology. 1985;89:785–90.

    CAS  Google Scholar 

  53. Modi N, Uthaya S, Fell J, Kulinskaya E. A randomized, double-blind, controlled trial of the effect of prebiotic oligosaccharides on enteral tolerance in preterm infants (ISRCTN77444690). Pediatr Res. 2010;68(5):440–5.

    CAS  Google Scholar 

  54. Davies ID, Avner ED. Fluid and electrolyte management. In: Fanaroff AA, Martin RJ, editors. Neonatal–perinatal medicine. 7th ed. St Louis: Mosby; 2002. p. 619–27.

    Google Scholar 

  55. De Curtis M, Senterre J, Rigo J. Renal solute load in preterm infants. Arch Dis Child. 1990;65:357–60.

    Google Scholar 

  56. De Curtis M, Rigo J. Nutrition and kidney in preterm infant. J Matern Fetal Neonatal Med. 2012;25(Suppl 1):55–9.

    Google Scholar 

  57. Al-Dahhan J, Jannoun L, Haycock GB. Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10-13 years of age. Arch Dis Child Fetal Neonatal Ed. 2002;86(2):F120–3. PubMed PMID: 11882555; PubMed Central PMCID: PMC1721384.

    CAS  Google Scholar 

  58. Chow JM, Douglas D. Fluid and electrolyte management in the premature infant. Neonatal Netw. 2008;27(6):379–86.

    Google Scholar 

  59. Rigo J, De Curtis M, Salle BL, et al. Bone mineral metabolism in the micropremie. Clin Perinatol. 2000;27:147–70.

    CAS  Google Scholar 

  60. Rigo J, Pieltain C, Salle B, Senterre J. Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr. 2007;96(7):969–74.

    Google Scholar 

  61. Abrams SA, Committee on Nutrition. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):e1676–83. https://doi.org/10.1542/peds.2013-0420. Epub 2013 Apr 29. Review.

    Article  Google Scholar 

  62. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296(5571):1313–6.

    CAS  Google Scholar 

  63. Domellöf M. Iron and other micronutrient deficiencies in low-birthweight infants. Nestle Nutr Inst Workshop Ser. 2013;74:197–206.

    Google Scholar 

  64. Terrin G, Canani BR, Passariello A. Zinc supplementation reduces morbidity and mortality in very low birth weight preterm neonates: a hospital based randomized, placebo-controlled trial in an industrialized country. Am J Clin Nutr. 2013;98(6):1468–74.

    CAS  Google Scholar 

  65. Terrin G, Berni Canani R, Di Chiara M, et al. Zinc in early life: a key element in the fetus and preterm neonate. Nutrients. 2015;7(12):10427–46. Published 2015 Dec 11. https://doi.org/10.3390/nu7125542.

    Article  CAS  Google Scholar 

  66. Braegger C, Decsi T, Dias JA, et al. Practical approach to paediatric enteral nutrition: a comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2010;51(1):110–22. https://doi.org/10.1097/MPG.0b013e3181d336d2.

    Article  Google Scholar 

  67. Terrin G, Boscarino G, Di Chiara M, et al. Nutritional intake influences zinc levels in preterm newborns: an observational study. Nutrients. 2020;12(2):529. Published 2020 Feb 19. https://doi.org/10.3390/nu12020529.

    Article  CAS  Google Scholar 

  68. American Academy of Pediatrics, Work Group on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics. 1997;100:1035–9.

    Google Scholar 

  69. Arslanoglu S, Boquien CY, King C, et al. Fortification of human milk for preterm infants: update and recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front Pediatr. 2019;7:76. Published 2019 Mar 22. https://doi.org/10.3389/fped.2019.00076.

    Article  Google Scholar 

  70. Kuschel CA, Harding JE. Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst Rev. 2004;(1):CD000343.

    Google Scholar 

  71. Henderson G, Anthony MY, McGuire W. Formula milk versus maternal breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2007;4:CD002972.

    Google Scholar 

  72. Lanzieri TM, Dollard SC, Josephson CD, Schmid DS, Bialek SR. Breast milk-acquired cytomegalovirus infection and disease in VLBW and premature infants. Pediatrics. 2013;131:e1937–4.

    Google Scholar 

  73. O’Connor DL, Kiss A, Tomlinson C, Bando N, Bayliss A, Campbell DM, Daneman A, Francis J, Kotsopoulos K, Shah PS, Vaz S, Williams B, Unger S; OptiMoM Feeding Group. Nutrient enrichment of human milk with human and bovine milk-based fortifiers for infants born weighing <1250 g: a randomized clinical trial. Am J Clin Nutr. 2018;108(1):108–16. https://doi.org/10.1093/ajcn/nqy067. Erratum in: Am J Clin Nutr. 2019 Aug 1;110(2):529. Erratum in: Am J Clin Nutr. 2020;111(5):1112.

  74. Weaver G, Bertino E, Gebauer C, Grovslien A, Mileusnic-Milenovic R, Arslanoglu S, Barnett D, Boquien CY, Buffin R, Gaya A, Moro GE, Wesolowska A, Picaud JC. Recommendations for the establishment and operation of human milk banks in Europe: a consensus statement from the European Milk Bank Association (EMBA). Front Pediatr. 2019;7:53. https://doi.org/10.3389/fped.2019.00053. PMID: 30886837; PMCID: PMC6409313.

    Article  Google Scholar 

  75. Ziegler JB. Breast feeding and HIV. Lancet. 1993;342(8885):1437–8. https://doi.org/10.1016/0140-6736(93)92926-k. Erratum in: Lancet. 1994;343(8891):244.

  76. American Academy of Pediatrics Committee on Pediatric AIDS. HIV testing and prophylaxis to prevent mother-to-child transmission in the United States. Pediatrics. 2008;122(5):1127–34. https://doi.org/10.1542/peds.2008-2175.

    Article  Google Scholar 

  77. Bar-Oz B, Preminger A, Peleg O, et al. Enterobacter sakazakii infection in the newborn. Acta Paediatr. 2001;90:356–8.

    CAS  Google Scholar 

  78. Mihatsch WA, Franz AR, Högel J, Pohlandt F. Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics. 2002;110:1199–203.

    Google Scholar 

  79. Senterre T, Rigo J. Optimizing early nutritional support based on recent recommendations in VLBW infants and postnatal growth restriction. J Pediatr Gastroenterol Nutr. 2011;53:536–42.

    CAS  Google Scholar 

  80. ESPGHAN Committee on Nutrition, Aggett PJ, Agostoni C, Axelsson I, De Curtis M, Goulet O, Hernell O, Koletzko B, Lafeber HN, Michaelsen KF, Puntis JWL, Rigo J, Shamir R, Szajewska H, Turck D, Weaver LT. Feeding preterm infants after hospital discharge: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2006;42:596–603.

    Google Scholar 

  81. Lapillonne A. Feeding the preterm infant after discharge. World Rev Nutr Diet. 2014;110:264–77.

    Google Scholar 

  82. Lucas A, Fewtrell MS, Morley R, Singhal A, Abbott RA, Isaacs E, Stephenson T, MacFadyen UM, Clements H. Randomized trial of nutrient-enriched formula versus standard formula for postdischarge preterm infants. Pediatrics. 2001;108:703–11.

    CAS  Google Scholar 

  83. Demarini S. Calcium and phosphorus nutrition in preterm infants. Acta Paediatr Suppl. 2005;94(449):87–92.

    Google Scholar 

  84. Pereira-da-Silva L, Virella D, Fusch C. Nutritional assessment in preterm infants: a practical approach in the NICU. Nutrients. 2019;11(9):1999. Published 2019 Aug 23. https://doi.org/10.3390/nu11091999.

    Article  CAS  Google Scholar 

  85. Bhatia J. Growth curves: how to best measure growth of the preterm infant. J Pediatr. 2013;162(3 Suppl):S2–6.

    Google Scholar 

  86. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    Google Scholar 

  87. Niklasson A, Albertsson-Wikland K. Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr. 2008;8:8.

    Google Scholar 

  88. Frondas-Chauty A, Loveau L, Huerou-Luron L, Rozè JC, Darmaun D. Air-displacement plethysmography for determining body composition in neonates: validation using live piglets. Pediatr Res. 2012;72:26–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Terrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terrin, G., Di Chiara, M., Sabatini, G., Senterre, T., De Curtis, M. (2022). Enteral Nutrition in Preterm Neonates. In: Guandalini, S., Dhawan, A. (eds) Textbook of Pediatric Gastroenterology, Hepatology and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-030-80068-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80068-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80067-3

  • Online ISBN: 978-3-030-80068-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics