Skip to main content

Microvillus Inclusion Disease and Tufting Enteropathy

  • Chapter
  • First Online:
Textbook of Pediatric Gastroenterology, Hepatology and Nutrition

Abstract

The heterogeneous group of protracted diarrheas starting in the first months of life traditionally grouped under “intractable diarrhea of infancy” includes many different diseases. Some children are affected by diseases that impair the normal development of intestinal epithelium, causing a severe watery diarrhea that usually requires total parenteral nutrition. The first to be described was microvillus inclusion disease that usually starts in the first days of life with a secretory diarrhea that is worsened by feeding (early-onset microvillus inclusion disease). In a small percentage of cases, diarrhea starts later in life, between 1 and 3 months (late-onset microvillus atrophy). The early form is very severe, and intestinal transplantation should be strongly considered in these cases.

A second congenital epithelial disease is “tufting enteropathy” (intestinal epithelial dysplasia). Tuft enteropathy is associated with severe secretory diarrhea, which worsens with nutrition. That is why affected children have to be treated with total parenteral nutrition. Cases totally dependent on total parenteral nutrition are candidates for intestinal transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery GB, Villavicencio O, Lilly JR, Randolph JG. Intractable diarrhea in early infancy. Pediatrics. 1968;41:712–22.

    CAS  Google Scholar 

  2. Hyman CJ, Reiter J, Rodnan J, Drash AL. Parenteral and oral alimentation in the treatment of the nonspecific protracted diarrheal syndrome of infancy. J Pediatr. 1971;78:17–29.

    CAS  Google Scholar 

  3. Shwachman H, Filler RM, Khaw KT. A new method of treating malnourished infants with severe chronic diarrhea. Acta Pediatr Scand. 1970;59:446–7.

    Google Scholar 

  4. Shwachman H, Lloyd-Still JD, Khaw KT, Antonowicz I. Protracted diarrhea of infancy treated by intravenous alimentation. II studies of small intestinal biopsy results. Am J Dis Child. 1973;125:365–8.

    CAS  Google Scholar 

  5. Walker-Smith JA. Intractable diarrhea of infancy. Saudi J Gastroenterol. 1995;1:152–6.

    CAS  Google Scholar 

  6. Larcher VF, Shepherd R, Francis DE, Harries JT. Protracted diarrhoea in infancy. Analysis of 82 cases with particular reference to diagnosis and management. Arch Dis Child. 1977;52:597–605.

    CAS  Google Scholar 

  7. Guarino A, Spagnuolo MI, Russo R, Albano F, Guandalini S, et al. Etiology and risk factors of severe and protracted diarrhea. J Pediatr Gastroenterol Nutr. 1995;20:173–8.

    CAS  Google Scholar 

  8. Catassi A, Fabiani E, Spagnuolo MI, et al. Severe and protracted diarrhea: results of the 3-year SIGEP multi-center survey. J Pediatr Gastroenterol Nutr. 1999;29:63–8.

    CAS  Google Scholar 

  9. Duggan CP, Jaksic T. Pediatric intestinal failure. N Engl J Med. 2017;377(7):666–75.

    CAS  Google Scholar 

  10. Wong T, Gupte G. Intestinal failure in children. Indian J Pediatr. 2016;83:1436–43.

    Google Scholar 

  11. Ahmed Z, Imdad A, James A, Connelly JA, Acra S. Autoimmune Enteropathy: an updated review with special focus on stem cell transplant therapy. Dig Dis Sci. 2019;64(3):643–54.

    Google Scholar 

  12. Villanacci S, Lougaris V, Ravelli A, Buscarini E, Salviato T, Lionetti P, Salemme M, Martelossi S, De Giacomo C, Falchetti D, Pelizzo G, Bassotti G. Clinical manifestations and gastrointestinal pathology in 40 patients with autoimmune enteropathy. Clin Immunol. 2019;207:10–7.

    CAS  Google Scholar 

  13. Sanderson IR, Risdon RA, Walker-Smith JA. Intractable ulcerating enterocolitis of infancy. Arch Dis Child. 1991;66:295–9.

    CAS  Google Scholar 

  14. Thapar N, Shah N, Ramsay AD, Lindley KJ, Milla PJ. Long-term outcome of intractable ulcerating enterocolitis of infancy. J Pediatr Gastroenterol Nutr. 2005;40:582–8.

    Google Scholar 

  15. Murch SH, Winyard PJ, Koletzko S, Wehner B, Cheema HA, Risdon RA, et al. Congenital enterocyte heparan sulphate deficiency with massive albumin loss, secretory diarrhoea, and malnutrition. Lancet. 1996;347:1299–301.

    CAS  Google Scholar 

  16. Bode L, Salvestrini C, Park PW, Li JP, Esko JD, Yamaguchi Y, et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest. 2008;118:229–38.

    CAS  Google Scholar 

  17. Bode L, Freeze HH. Applied glycoproteomics – approaches to study genetic-environmental collisions causing protein-losing enteropathy. Biochim Biophys Acta. 1760;2006:547–59.

    Google Scholar 

  18. Lachaux A, Bouvier R, Loras-Duclaux I, Chappuis JP, Meneguzzi G, Ortonne JP. Isolated deficient alpha6beta4 integrin expression in the gut associated with intractable diarrhea. J Pediatr Gastroenterol Nutr. 1999;29:395–401.

    CAS  Google Scholar 

  19. Salvestrini C, McGrath JA, Ozoemena L, Husain K, Buhamrah E, Sabery N, et al. Desquamative enteropathy and pyloric atresia without skin disease caused by a novel intracellular beta4 integrin mutation. J Pediatr Gastroenterol Nutr. 2008;47:585–91.

    Google Scholar 

  20. Girault D, Goulet O, Le Deist F, Brousse N, Colomb V, Césarini JP, et al. Intractable infant diarrhea associated with phenotypic abnormalities and immunodeficiency. J Pediatr. 1994;125:36–42.

    CAS  Google Scholar 

  21. Stankler L, Lloyd D, Pollitt RJ, Gray ES, Thom H, Russell G. Unexplained diarrhoea and failure to thrive in two siblings with unusual facies and abnormal scalp hair shafts: a new syndrome. Arch Dis Child. 1982;57:212–6.

    CAS  Google Scholar 

  22. Verloes A, Lombet J, Lambert Y, Hubert AF, Deprez M, Fridman V, et al. Tricho-hepato-enteric syndrome: further delineation of a distinct syndrome with neonatal hemochromatosis phenotype, intractable diarrhea, and hair anomalies. Am J Med Genet. 1997;68:391–5.

    CAS  Google Scholar 

  23. Fabre A, André N, Breton A, Broué P, Badens C, Roquelaure B. Intractable diarrhea with "phenotypic anomalies" and tricho-hepato-enteric syndrome: two names for the same disorder. Am J Med Genet A. 2007;143A:584–8.

    Google Scholar 

  24. Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology. 2010;138:2388–98, 2398.e1–2.

    CAS  Google Scholar 

  25. Fabre A, Bourgeois P, Coste M-E, Roman C, Barlogis V, Badens C. Management of syndromic diarrhea/tricho-hepato-enteric syndrome: a review of the literature. Rare Dis Res. 2017;6:152–7.

    Google Scholar 

  26. Davidson GP, Cutz E, Hamilton JR, Gall DG. Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology. 1978;75:783–90.

    CAS  Google Scholar 

  27. Schmitz J, Ginies JL, Arnaud-Battandier F, et al. Congenital microvillous atrophy, a rare cause of neonatal intractable diarrhoea. Pediatr Res. 1982;16:1014.

    Google Scholar 

  28. Goutet JM, Boccon-Gibod L, Chatelet F, Ploussard JP, Navarro J, Polonovski CI. Familial protracted diarrhoea with hypoplastic villous atrophy: report of two cases. Pediatr Res. 1982;16:1045.

    Google Scholar 

  29. Phillips AD, Jenkins P, Raafat F, Walker-Smith JA. Congenital microvillous atrophy: specific diagnostic features. Arch Dis Child. 1985;60:135–40.

    CAS  Google Scholar 

  30. Guarino A, Nocerino A, Cinti S, Berni Canani R, Terracciano L, Raimondi F, Guandalini S. Atrofia congenita dei microvilli intestinali. Riv Ital Ped. 1992;18:150–3.

    Google Scholar 

  31. Cutz E, Rhoads JM, Drumm B, Sherman PM, Durie PR, Forstner GG. Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation. N Engl J Med. 1989;320:646–51.

    CAS  Google Scholar 

  32. Pecache N, Patole S, Hagan R, Hill D, Charles A. J M Papadimitriou neonatal congenital microvillus atrophy. Postgrad Med J. 2004;80:80–3.

    CAS  Google Scholar 

  33. van der Velde KJ, Dhekne HS, Swertz MA, Sirigu S, Ropars V, Vinke PC, Rengaw T, van den Akker PC, Rings EH, Houdusse A, van Ijzendoorn SC. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum Mutat. 2013;34:1597–605.

    Google Scholar 

  34. Phillips AD, Schmitz J. Familial microvillous atrophy: a clinic pathological survey of 23 cases. J Pediatr Gastroenterol Nutr. 1992;14:380–96.

    CAS  Google Scholar 

  35. Mierau GW, Wills EJ, Wyatt-Ashmead J, Hoffenberg EJ, Cutz E. Microvillous inclusion disease: report of a case with atypical features. Ultrastruct Pathol. 2001;25:517–21.

    CAS  Google Scholar 

  36. Raafat F, Green NJ, Nathavitharana KA, Booth IW. Intestinal microvillous dystrophy: a variant of microvillous inclusion disease or a new entity? Hum Pathol. 1994;25:1243–8.

    CAS  Google Scholar 

  37. Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40:1163–5.

    Google Scholar 

  38. Erickson RP, Larson-Thomé K, Valenzuela RK, Whitaker SE, Shub MD. Navajo microvillous inclusion disease is due to a mutation in MYO5B. Am J Med Genet A. 2008;146A(24):3117–9.

    CAS  Google Scholar 

  39. Vogel GF, Janecke AR, Krainer IM, Gutleben K, Witting B, Mitton SG, Mansour S, Ballauff A, Roland JT, Engevik AC, Cutz E, Müller T, Goldenring JR, Huber LA, Hess MW. Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease. Traffic. 2017;18:453–64.

    CAS  Google Scholar 

  40. Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech. 2018;11(2):dmm031088.

    Google Scholar 

  41. Halac U, Lacaile F, Joly F, Hugot JP, Talbotec C, Colomb V, Ruemmele FM, Goulet O. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011;52:460–5.

    Google Scholar 

  42. Ruemmele FM, Bindl L, Woelfle J, Buderus S, Phillips AD, Lentze MJ. Recurrent episodes of necrotizing enterocolitis complicating congenital microvillous atrophy. Dig Dis Sci. 2001;46:1264–9.

    CAS  Google Scholar 

  43. Perry A, Bensallah H, Martinez-Vinson C, Berrebi D, Arbeille B, Salomon J, Goulet O, Marinier E, Drunat S, Marie-Elisabeth Samson-Bouma ME, Gérard B, Hugot JP. Microvillous atrophy: atypical presentations. J Pediatr Gastroenterol Nutr. 2014;59:779–85.

    Google Scholar 

  44. Siahanidou T, Koutsounaki E, Skiathitou AV, Stefanaki K, Marinos E, Panajiotou I, Chouliaras G. Extraintestinal manifestations in an infant with microvillus inclusion disease: complications or features of the disease? Eur J Pediatr. 2013;172(9):1271–5.

    Google Scholar 

  45. Phillips AD, Szafranski M, Man LY, Wall WJ. Periodic acid-Schiff staining abnormality in microvillous atrophy: photometric and ultrastructural studies. J Pediatr Gastroenterol Nutr. 2000;30(1):34–42.

    CAS  Google Scholar 

  46. Groisman GM, Amar M, Livne E. CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am J Surg Pathol. 2002;26(7):902–7.

    Google Scholar 

  47. Koepsell SA, Talmon G. Light microscopic diagnosis of microvillus inclusion disease on colorectal specimens using CD10. Am J Surg Pathol. 2010;34:970–2.

    Google Scholar 

  48. Bell SW, Kerner JA, Sibley RK. Microvillous inclusion disease. The importance of electron microscopy for diagnosis. Am J Surg Pathol. 1991;15:1157–64.

    CAS  Google Scholar 

  49. Weeks DA, Zuppan CW, Malott RL, Mierau GW. Microvillous inclusion disease with abundant vermiform, electron-lucent vesicles. Ultrastruct Pathol. 2003;27:337–40.

    Google Scholar 

  50. Pohl JF, Shub MD, Trevelline EE, Ingebo K, Silber G, Rayhorn N, Holve S, Hu D. A cluster of microvillous inclusion disease in the Navajo population. J Pediatr. 1999;134(1):103–6.

    CAS  Google Scholar 

  51. Guandalini S, Nocerino A, Saitta F, Fasano A, Ascione G, De Curtis M, et al. Valutazione dell’assorbimento di elettroliti ed acqua nel colon di un lattante affetto da atrofia congenita dei microvilli. Riv Ital Ped. 1987;13:76.

    Google Scholar 

  52. Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature. 2007;448:366–9.

    CAS  Google Scholar 

  53. Schafer JC, Baetz NW, Lapierre LA, McRae RE, Roland JT, Goldenring JR. Rab11-FIP2 interaction with MYO5B regulates movement of Rab11a-containing recycling vesicles. Traffic. 2014;15:292–308.

    CAS  Google Scholar 

  54. Knowles BC, Roland JT, Krishnan M, et al. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J Clin Invest. 2014;124:2947–62.

    CAS  Google Scholar 

  55. Weis VG, Knowles BC, Choi E, Goldstein AE, Williams JA, Manning EH, Roland JT, Lynne A, Lapierre LA, Goldenring JR. Loss of MYO5B in mice recapitulates microvillus inclusion disease and reveals an apical trafficking pathway distinct to neonatal duodenum. Cell Mol Gastroenterol Hepatol. 2016;2(2):131–57.

    Google Scholar 

  56. Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Moll Cell Biol. 2009;10:597–608.

    CAS  Google Scholar 

  57. Szperl AM, Golachowska MR, Bruinenberg M, Prekeris R, Thunnissen A-MWH, Karrenbeld A, Dijkstra G, Hoekstra D, Mercer D, et al. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease. J Pediatr Gastroenterol Nutr. 2011;52(3):307–13.

    CAS  Google Scholar 

  58. Geoffrey TG, Melissa HM, DiMaio DJ, Muirhead D. Rab11 is a useful tool for the diagnosis of microvillous inclusion disease. Int J Surg Pathol. 2012;20(3):252–16.

    Google Scholar 

  59. Mosa MH, Nicolle O, Maschalidi S, et al. Dynamic formation of microvillus inclusions during Enterocyte differentiation in Munc18–2-deficient intestinal organoids. Cell Mol Gastroenterol Hepatol. 2018;6(4):477–493.e1.

    Google Scholar 

  60. Dhekne HS, Pylypenko O, Overeem AW, et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: a mutation update. Hum Mutat. 2018;39(3):333–44.

    CAS  Google Scholar 

  61. Golachowska MR, van Dael CM, Keuning H, Karrenbeld A, Hoekstra D, Gijsbers CF, et al. MYO5B mutations in patients with microvillus inclusion disease presenting with transient renal Fanconi syndrome. J Pediatr Gastroenterol Nutr. 2012;54:491–8.

    CAS  Google Scholar 

  62. Schlegel C, Weis VG, Knowles BC, et al. Apical membrane alterations in non-intestinal organs in microvillus inclusion disease. Dig Dis Sci. 2018;63:356–65.

    CAS  Google Scholar 

  63. Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, Sauvat F, Irtan S, Davit-Spraul A, Jacquemin E, Ruemmele F, Rainteau D, Goulet O, Colomb V, Chardot C, Henrion-Caude A, Debray D. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology. 2014;60(1):301–10.

    CAS  Google Scholar 

  64. Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY, Escher JC, et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology. 2014;147:65–8.

    CAS  Google Scholar 

  65. Vogel GF, van Rijn JM, Krainer IM, Janecke AR, Posovszky C, Cohen M, Searle C, Jantchou P, Escher JC, Patey N, Cutz E, Müller T, Middendorp S, Hess MW, Huber LA. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight. 2017;2(14):e94564.

    Google Scholar 

  66. Stepensky P, Bartram J, Barth TF, Lehmberg K, Walther P, Amann K, Philips AD, Beringer O, Zur Stadt U, Schulz A, Amrolia P, Weintraub M, Debatin KM, Hoenig M, Posovszky C. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations. Pediatr Blood Cancer. 2013;60(7):1215–22.

    CAS  Google Scholar 

  67. Ruemmele FM, Schmitz J, Goulet O. Microvillous inclusion disease (microvillous atrophy). Orphanet J Rare Dis. 2006;1:22.

    Google Scholar 

  68. Kennea N, Norbury R, Anderson G, Tekay A. Congenital microvillous inclusion disease presenting as antenatal bowel obstruction. Ultrasound Obstet Gynecol. 2001;17:172–4.

    CAS  Google Scholar 

  69. Chen CP, Chiang MC, Wang TH, et al. Microvillus inclusion disease: prenatal ultrasound findings, molecular diagnosis and genetic counseling of congenital diarrhea. Taiwan J Obstet Gynecol. 2010;49(4):487–94.

    Google Scholar 

  70. Gordon M, Akobeng A. Racecadotril for acute diarrhoea in children: systematic review and meta-analyses. Arch Dis Child. 2016;101:234–40.

    Google Scholar 

  71. Tran LC, Lazonby G, Ellis D, Goldthorpe J, Iglesias N, Steele J, Zamvar V, Puntis JWL, Vora R. Racecadotril may reduce diarrhoea in microvillous inclusion disease. J Pediatr Gastroenterol Nutr. 2017;64(1):e25–6.

    Google Scholar 

  72. Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, Sauvat F, Irtan S, Anne D-S, Jacquemin E, Ruemmele F, Rainteau D, Goulet O, Colomb V, Chardot C, Henrion-Caude A, Debray D. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology. 2014;60(1):301–10.

    CAS  Google Scholar 

  73. Ruemmele FM, Jan D, Lacaille F, Cézard JP, Canioni D, Phillips AD, et al. New perspectives for children with microvillous inclusion disease: early small bowel transplantation. Transplantation. 2004;77:1024–8.

    Google Scholar 

  74. Halac U, Lacaille F, Joly F, Hugot JP, Talbotec C, Colomb V, et al. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011;52:460–5.

    Google Scholar 

  75. Reifen RM, Cutz E, Griffiths AM, Ngan BY, Sherman PM. Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr. 1994;18:379–85.

    CAS  Google Scholar 

  76. Goulet O, Salomon J, Ruemmele F, de Serres NP, Brousse N. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2007;2:20.

    Google Scholar 

  77. Goulet O. Intestinal epithelial dysplasia: a new entity. Arch Pediatr. 1996;3(suppl 1):324s–5s.

    Google Scholar 

  78. Tang W, Huang T, Xu Z, Huang Y. Novel mutations in EPCAM cause congenital tufting Enteropathy. J Clin Gastroenterol. 2018;52(1):e1–6.

    CAS  Google Scholar 

  79. Bird LM, Sivagnanam M, Taylor S, Newbury RO. A new syndrome of tufting enteropathy and choanal atresia, with ophthalmologic, hematologic and hair abnormalities. Clin Dysmorphol. 2007;16:211–21.

    Google Scholar 

  80. Roche O, Putterman M, Salomon J, Lacaille F, Brousse N, Goulet O, Dufier JL. Superficial punctate keratitis and conjunctival erosions associated with congenital tufting enteropathy. Am J Ophthalmol. 2010;150:116–21.

    Google Scholar 

  81. Al-Mayouf S, Alswaied N, Alkuraya F, et al. Tufting enteropathy and chronic arthritis: a newly recognized association with a novel EpCAM gene mutation. J Pediatr Gastroenterol Nutr. 2009;49:642–4.

    Google Scholar 

  82. Azzopardi C, Pullicino E, Coleiro B, Galea SS. Congenital tufting enteropathy and chronic arthritis: a clinical and radiological perspective. BMJ Case Rep. 2016;2016:bcr2016215252.

    Google Scholar 

  83. Ko JS, Seo JK, Shim JO, Hwang SH, Park HS, Kang GH. Tufting Enteropathy with EpCAM mutations in two siblings. Gut Liver. 2010;4(3):407–10.

    Google Scholar 

  84. Sivagnanam M, Mueller JL, Lee H, Chen Z, Nelson SF, Turner D, et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology. 2008;135:429–37.

    CAS  Google Scholar 

  85. Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B. Sahebkar a shedding light on the EpCAM: an overview. J Cell Physiol. 2019;234(8):12569–80.

    CAS  Google Scholar 

  86. Das B, Okamoto K, Rabalais J, Ronald R, Marchelletta RR, Barrett KE, Das S, Niwa M, Sivagnanam M. Congenital tufting enteropathy-associated mutant of epithelial cell adhesion molecule activates the unfolded protein response in a murine model of the disease. Cell. 2020;9(4):946.

    CAS  Google Scholar 

  87. Sivagnanam M, Janecke AR, Müller T, Heinz-Erian P, Taylor S, Bird LM. Case of syndromic tufting enteropathy harbors SPINT2 mutation seen in congenital sodium diarrhea. Clin Dysmorphol. 2010;19(1):48.

    Google Scholar 

  88. Wu C-J, Feng X, Lu M, Morimura S, Udey MC. Cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis. J Clin Investig. 2017;127(2):623–34.

    Google Scholar 

  89. Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, et al. Genetic characterization of congenital tufting enteropathy: EpCAM associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133:299–310.

    CAS  Google Scholar 

  90. Heinz-Erian P, Müller T, Krabichler B, Schranz M, Becker C, Rüschendorf F, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 2009;84:188–96.

    CAS  Google Scholar 

  91. El-Matary W, Dalzell AM, Kokai G, Davidson JE. Tufting enteropathy and skeletal dysplasia: is there a link? Eur J Pediatr. 2007;166:265–8.

    Google Scholar 

  92. Patey N, Scoazec JY, Cuenod-Jabri B, Canioni D, Kedinger M, Goulet O, Brousse N. Distribution of cell adhesion molecules in infants with intestinal epithelial dysplasia (tufting enteropathy). Gastroenterology. 1997;113:833–43.

    CAS  Google Scholar 

  93. Ranganathan S, Schmitt LA, Sindhi R. Tufting enteropathy revisited: the utility of MOC31 (EpCAM) immunohistochemistry in diagnosis. Am J Surg Pathol. 2014;38:265–72.

    Google Scholar 

  94. Lemale J, Coulomb A, Dubern B, Boudjemaa S, Viola S, Josset P, et al. Intractable diarrhea with tufting enteropathy: a favorable outcome is possible. J Pediatr Gastroenterol Nutr. 2011;52:734–9.

    Google Scholar 

  95. Ashworth I, Wilson A, Aquilina S, Parascandalo R, Mercieca V, Gerada J, Macdonald S, Simchowitz V, Hill S. Reversal of intestinal failure in children with tufting enteropathy supported with parenteral nutrition at home. J Pediatr Gastroenterol Nutr. 2018;66(6):967–71.

    Google Scholar 

  96. Paramesh AS, Fishbein T, Tschernia A, Leleiko N, Magid MS, Gondolesi GE, Kaufman SS. Isolated small bowel transplantation for tufting enteropathy. J Pediatr Gastroenterol Nutr. 2003;36(1):138–40.

    Google Scholar 

  97. Roche O, Putterman M, Salomon J, Lacaille F, Brousse N, Goulet O, Dufier JL. Superficial punctate keratitis and conjunctival erosions associated with congenital tufting enteropathy. Ophthalmology. 2010;150(1):116–121.e1.

    Google Scholar 

  98. Hirabayashi KE, Moore AT, Mendelsohn BA, Taft RJ, Chawla A, Perry D, Henry D, Slavotinek A. Congenital sodium diarrhea and chorioretinal coloboma with optic disc coloboma in a patient with biallelic SPINT2 mutations, including p.(Tyr163Cys). Am J Med Genet A. 2018;176(4):997–1000.

    CAS  Google Scholar 

  99. Morroni M, Cangiotti AM, Guarino A, Cinti S. Unusual ultrastructural features in microvillous inclusion disease: a report of two cases. Virchows Arch. 2006;448(6):805–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Nocerino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nocerino, A., Guandalini, S. (2022). Microvillus Inclusion Disease and Tufting Enteropathy. In: Guandalini, S., Dhawan, A. (eds) Textbook of Pediatric Gastroenterology, Hepatology and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-030-80068-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80068-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80067-3

  • Online ISBN: 978-3-030-80068-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics