Skip to main content

Water Quality and Quantity Benefits of Agroforestry and Processes: Long-Term Case Studies from Missouri, USA

  • Chapter
  • First Online:
Agroforestry and Ecosystem Services

Abstract

Two long-term case studies established in 1991 and 2000 use row crop watersheds in northeast Missouri and grazing watersheds in central Missouri to evaluate water benefits of agroforestry (AF). Results showed that integration of AF into a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation and a grazing system has improved the quality of surface, subsurface, and ground water by reducing sediment, nitrogen, and phosphorus losses. Model simulations have further proven AF’s water quality benefits on these watersheds. Water quality improvements of AF are attributed to changes in soil properties, nutrient cycling, water use by the perennial vegetation, soil biodiversity, chemical-biological reactions, and microclimate. These findings suggest that strategic placement of AF can help improve water quality while contributing to enhanced ecosystem services like pollination, aesthetic value, biodiversity, and diversified products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Agroforestry

CT

Computed tomography

GAF:

Grazing AF watershed study

GB:

Grass buffer

HARC:

Horticulture Agroforestry Research Center

Ksat:

Saturated hydraulic conductivity

MLRA:

Major land resource areas

N:

Nitrogen

NPSP:

Nonpoint source pollution

P:

Phosphorus

RAF:

Row crop AF watershed study

SOM:

Soil organic matter

References

  • Adhikari P, Udawatta RP, Anderson SH, Gantzer CJ (2014) Soil thermal properties under prairies, conservation buffers, and corn/soybean land use systems. Soil Sci Soc Am J 78:1977–1986

    Article  CAS  Google Scholar 

  • Akdemir E, Anderson SH, Udawatta RP (2016) Influence of agroforestry buffers on soil hydraulic properties relative to row crop management. Soil Sci 181:368–376. https://doi.org/10.1097/SS.0000000000000170

    Article  CAS  Google Scholar 

  • Alagele SM, Anderson SH, Udawatta RP, Veum KS, Rankoth LM (2019a) Effects of conservation practices on soil quality compared to a corn/soybean rotation on a claypan soil. J Environ Qual 48:1694–1702. https://doi.org/10.2134/jeq2019.03.0121

    Article  CAS  Google Scholar 

  • Alagele SM, Anderson SH, Udawatta RP (2019b) Biomass and buffer management practice effects on soil hydraulic properties compared to grain crops for claypan landscapes. Agrofor Syst 93:1609–1625. https://doi.org/10.1007/s10457-018-0255-1

    Article  Google Scholar 

  • Alagele SM, Anderson SH, Udawatta RP (2020a) Agroforestry, grass, biofuel, and row crop management effects on soil water dynamics for claypan landscapes. Soil Sci Soc Am J 84:203–219

    Article  CAS  Google Scholar 

  • Alagele SM, Anderson SH, Udawatta RP, Veum KS, Rankoth LM (2020b) Long-term perennial management and cropping effects on soil microbial biomass for claypan watersheds. Agron J 112:815–827

    Article  CAS  Google Scholar 

  • Alagele SM, Jose S, Anderson SH, Udawatta RP (2021) Hydraulic lift: processes, evidence, and implications for improving crop production and the environment. Agrofor Syst. https://doi.org/10.1007/s10457-021-00614-w

  • Al-Kaisi MM, Douelle A, Kwaw-Mensah D (2014) Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J Soil Water Conserv 69:574–580

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Anderson SH, Udawatta RP, Seobi T, Garrett HE (2009) Soil water content and infiltration in Agroforestry buffer strips. Agrofor Syst 75:5–16. https://doi.org/10.1007/s10457-008-9128-3

    Article  Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    Google Scholar 

  • Bainard KLD, Klironomos JN, Gordon AM (2011a) Arbuscular mycorrhizal fungi in a tree-based intercropping system: a review of their abundance and diversity. Pedobiologia Int J Soil Biol 54:57–61

    Google Scholar 

  • Bainard LD, Kochb AM, Gordon AM, Newmaster SG, Thevathasan NV, Klironomosb JN (2011b) Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system. Agric Ecosyst Environ 144:13–20

    Article  Google Scholar 

  • Bainard LD, Kochb AM, Gordon AM, Klironomos JN (2012) Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biol Biochem 45:172–180

    Article  CAS  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363:345–356

    Google Scholar 

  • Balvanera P, Kremen C, Martinez-Ramos M (2005) Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol Appl 15:360–375

    Article  Google Scholar 

  • Banarjee S, Baah-Acheamfour M, Carlyle CM, Bissett A, Richardon AE, Siddique T, Bork EW, Chang SX (2016) Determinants of bacterial communities in Canadian agroforestry systems. Environ Microbiol 18:1805–1816

    Article  Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functions. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bardhan S, Jose S, Udawatta RP, Fritschi F (2013) Microbial community diversity in a 21-year old temperate alley cropping system. Agrofor Syst 87:1031–1041

    Article  Google Scholar 

  • Beuschela R, Piephob H, Joergensena RG, Wachendorfa C (2019) Similar spatial patterns of soil quality indicators in three poplar-based silvo-arable alley cropping systems in Germany. Biol Fertil Soils 55:1–14. https://doi.org/10.1007/s00374-018-1324-3

    Article  CAS  Google Scholar 

  • Bharati L, Lee KH, Isenhart TM, Schultz RC (2002) Soil-water infiltration under crops, pasture, and established riparian buffer in Midwest USA. Agrofor Syst 56:249–257

    Article  Google Scholar 

  • Boerner REJ, Decker KLM, Sutherland EK (2000) Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biol Biochem 32:899–908

    Article  CAS  Google Scholar 

  • Brussaard L, Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244. https://doi.org/10.1016/j.agee.2006.12.013

    Article  Google Scholar 

  • Burwell RE, Schuman GE, Saxton KE, Heinemann HG (1976) Nitrogen in subsurface- discharge from agricultural watersheds. J Environ Qual 5:325–329

    Article  CAS  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. PNAS 104:18123–18128

    Google Scholar 

  • Chifflot V, Rivest D, Olifindvier A, Cogliastro A, Khasa D (2009) Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agric Ecosyst Environ 131:32–39

    Article  CAS  Google Scholar 

  • Chu B, Goyne KW, Anderson SH, Lin CH, Udawatta RP (2010) Veterinary antibiotic sorption to agroforestry buffer, grass buffer, and cropland soils. Agrofor Syst 79:67–80

    Article  Google Scholar 

  • Dollinger J, Jose S (2018) Agroforestry for soil health. Agrofor Syst 92(2):213–219

    Article  Google Scholar 

  • FAO (2019) World’s food and agriculture statistical pocketbook. FAO, Rome, p 254

    Google Scholar 

  • Gantzer CJ, Buyanovsky GA, Alberts EE, Remley PA (1987) Effects of soybean and corn residue decomposition on soil strength and splash detachment. Soil Sci Soc Am J 51:202–206

    Article  Google Scholar 

  • Garrett HE, Kurtz WB, Lassoie MA, Gold MA, Pearson HA, Hardesty LH, Buck LE Slusher JP (1994) Agroforestry: an integrated land use management system for production and farmland conservation. Final report for the USDA soil conservation service project. USDA SCS 68-3A75-3-134: Resource Conservation Act Appraisal, Soil Conservation Service, Washington, DC

    Google Scholar 

  • Gold MA, Garrett HE (2009) Agroforestry nomenclature, concepts, and practices. In: Garrett HE (ed) North American agroforestry, an integrated science and practice, 2nd edn. American Society of Agronomy, Inc, Madison, WI, pp 45–55

    Google Scholar 

  • Hillebrand H, Matthiessen (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419

    Article  PubMed  Google Scholar 

  • Hooper DU, Chapin FSI, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vander-meer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huang W, Luukkanen O, Johanson S, Kaarakka V, Räisänen S, Vihemäki H (2002) Agroforestry for biodiversity conservation of nature reserves: functional group identification and analysis. Agrofor Syst 55:65–72

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. https://doi.org/10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85:1–8

    Article  Google Scholar 

  • Jose S (2019) Environmental impacts and benefits of agroforestry. In: Oxford Encyclopedia of Agriculture and Environment. Oxford University Press, USA. https://doi.org/10.1093/acrefore/9780199389414.013.195

    Chapter  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Biehle DJ (2000) Defining competition vectors in a temperate alley cropping system in the Midwestern USA. 2. Competition for water. Agrofor Syst 48:41–59

    Article  Google Scholar 

  • Jose S, Gillespie AR, Pallardy SG (2004) Inter-specific interactions in temperate agroforestry. Agrofor Syst 61:237–255

    Google Scholar 

  • Kenny JF, Barber NL, Hutson SS, Linsey KS, Lovelace JK, Maupin MA (2009) Estimated use of water in the United States in 2005. Circular 1344

    Google Scholar 

  • Koltun GF, Landers MN, Nolan KM, Parker RS (1997) Sediment transport and geomorphology issues in the water resources division. Proceedings of the U.S. Geological Survey Sediment Workshop, February 4–7, 1997

    Google Scholar 

  • Kremer RJ, Kussman RD (2011) Soil quality in a pecan - kura clover alley cropping system in the Midwestern USA. Agrofor Syst 83:213–223

    Article  Google Scholar 

  • Kremer RJ, Hezel LF, Veum KS (2015) Soil health improvement in an organic orchard production system in northwest Missouri. Proc Organ Agric Res Symp 1-4. LaCrosse, WI

    Google Scholar 

  • Kumar KC, Gupta S, Chander Y, Singh A (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    Article  CAS  Google Scholar 

  • Kumar S, Anderson SH, Bricknell LG, Udawatta RP, Gantzer CJ (2008) Soil hydraulic properties influenced by agroforestry and grass buffers for grazed pasture systems. J Soil Water Conserv 63:224–232

    Article  Google Scholar 

  • Kumar S, Anderson SH, Udawatta RP (2010) Agroforestry and grass buffer influences on macropores measured by computed tomography under grazed pasture systems. Soil Sci Soc Am J 74:203–212

    Article  CAS  Google Scholar 

  • Kumar S, Anderson SH, Udawatta RP, Kallenbach RL (2012) Water infiltration influenced by agroforestry and grass buffers for a grazed pasture system. Agrofor Syst 84:325–335

    Article  Google Scholar 

  • LaCanne CE, Lundgren JG (2018) Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6:e4428. https://doi.org/10.7717/peerj.4428

  • Lacombe S, Bradley RL, Hamel C, Beaulieu C (2009) Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agric Ecosyst Environ 131:25–31

    Article  Google Scholar 

  • Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76. https://doi.org/10.1038/34166

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2004) Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri. Agroforest Syst 63:91–99

    Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, Li YZ, George MF (2007) An Improved HPLC-MS/MS Method for Determination of Isoxaflutole (Balance™) and Its Metabolites in Soils and Forage Plants. J Agric Food Chem 55:3805–3815

    Google Scholar 

  • Lin C-H, Goyne KW, Kremer RJ, Lerch RN, Garrett HE (2010) Dissipation of sulfamethazine and tetracycline in the root zone of grass and tree species. J Environ Qual 39:1269–1278

    Google Scholar 

  • Lin C-H, Lerch RN, Goyne KW, Garrett HE (2011) Reducing herbicides and veterinary antibiotics losses from agroecosystems using vegetative buffers. J Environ Qual 40:791–799

    Google Scholar 

  • Massé D, Saady N, Gilbert Y (2014) Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals 4(2):146–163. PMC 4494381. PMID 26480034. https://doi.org/10.3390/ani4020146

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers RT, Zak DR, White DC, Peacock A (2001) Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–367

    Article  Google Scholar 

  • Missouri Department of Natural Resources (2012) Missouri water quality report (Section 305(b) report). http://www.dnr.mo.gov/env/wpp/waterquality/305b/2012-305b.pdf. Accessed 30 Mar 2013

  • Missouri Department of Natural Resources (2017) Soil and water conservation districts. Conserving Missouri’s soil and water. Missouri Department of natural Resources, Soil and Water Conservation Program. PUB002181. p 2

    Google Scholar 

  • Mungai NW, Motavalli PP, Kremer RJ, Nelson KA (2005) Spatial variation of soil enzyme activities and microbial functional diversity in temperate alley cropping systems. Biol Fertil Soils 42:129–136

    Article  Google Scholar 

  • Myers C, Polak D, Stortz L (1997) Full tree weight equations and tables for selected central hardwoods. Department of Forestry, Southern Illinois University, Carbondale, IL

    Google Scholar 

  • Nearing MA (2001) Potential changes in rainfall erosivity in the US with climate change during the 21st century. J Soil Water Conserv 56:229–232

    Google Scholar 

  • NRC (National Research Council) (2010) Toward sustainable agricultural systems in the 21st century, Committee on Twenty-First Century Systems Agriculture, Board on Agriculture and Natural Resources. National Academies Press, Washington, DC

    Google Scholar 

  • Pardo LH, Robin-Abbott M, Duarte N, Miller EK (2005) Tree chemistry database (version 1.0) general technical report NE-324, Forest Service. Northeastern Research Station, Newtown Square, PA, pp 19073–13294

    Book  Google Scholar 

  • Paudel BR, Udawatta RP, Kremer RJ, Anderson SH (2011) Agroforestry and grass buffer effects on soil quality parameters for grazed pasture and row-crop systems. App Soil Ecol 48:125–132

    Article  Google Scholar 

  • Paudel BR, Udawatta RP, Kremer RJ, Anderson SH (2012) Soil quality indicator responses to crop, grazed pasture, and agroforestry buffer management. Agrofor Syst 84:311–323

    Article  Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, Van Der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Sahin H, Anderson SH, Udawatta RP (2016) Water infiltration and soil water content in claypan soils influenced by agroforestry and grass buffers compared to row crop management. Agrofor Syst 90:839–860. https://doi.org/10.1007/s10457-016-9899-x

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate, and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759. PMID 16677683. https://doi.org/10.1016/j.chemosphere.2006.03.026

    Article  CAS  PubMed  Google Scholar 

  • Sauer TJ, Cambardella CA, Brandle JR (2007) Soil carbon and litter dynamics in a red cedar-scotch pine shelterbelt. Agrofor Syst 71:163–174

    Article  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Schmitt SJ (1999) Application of a flow source mixing model and remote sensing to the hydrology and water quality of two small watersheds in Northern Missouri. MS Thesis, Univ. of Missouri, Columbia, MO, USA

    Google Scholar 

  • Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island, Washington, DC

    Google Scholar 

  • Schultz RC, Isenhart TM, Colletti JP, Simpkins WW, Udawatta RP, Schultz PL (2009) Riparian and upland buffer practices. In: Garrett HE (ed) North American agroforestry an integrated science and practice. American Society of Agronomy, Madison, WI, pp 163–218

    Google Scholar 

  • Senaviratne GMMMA, Udawatta RP, Baffaut C, Anderson SH (2013) Agricultural policy environmental extender simulation of three adjacent row-crop watersheds in the claypan region. J Environ Qual 42:726–736. https://doi.org/10.2134/jeq2012.0241

    Article  CAS  Google Scholar 

  • Senaviratne GMMMA, Udawatta RP, Anderson SH, Baffaut C, Thompson A (2014a) Use of fuzzy rainfall-runoff predictions for claypan watersheds with conservation buffers. J Hydrol 507:1008–1018. https://doi.org/10.1016/j.jhydrol.2014.06.023

    Article  Google Scholar 

  • Senaviratne GMMMA, Udawatta RP, Baffaut C, Anderson SH (2014b) Evaluation of a stepwise, multiobjective, multivariable parameter optimization method for the APEX model. J Environ Qual 43:1381–1391. https://doi.org/10.2134/jeq2013.12.0509

    Article  CAS  PubMed  Google Scholar 

  • Senaviratne GMMMA, Udawatta RP, Baffaut C, Lory J, Nelson NO, Bhandari A (2018) Evaluation of four parameterization strategies for the APEX model. Am Soc Agric Biol Eng 61:1603–1617. https://doi.org/10.13031/trans.12656

    Article  Google Scholar 

  • Seobi T, Anderson SH, Udawatta RP, Gantzer CJ (2005) Influences of grass and agroforestry buffer strips on soil hydraulic properties. Soil Sci Soc Am J 69:893–901

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    Article  CAS  Google Scholar 

  • Sistla SA, Roddy AB, Williams NE, Kramer DB, Stevens K, Allison SD (2016) Agroforestry practices promote biodiversity and natural resource diversity in Atlantic Nicaragua. PLoS One 11(9):e0162529. https://doi.org/10.1371/journal.pone.0162529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Stamps WT, Linit MJ (1998) Plant diversity and arthropod communities: implications for temperate agroforestry. Agrofor Syst 39:73–89

    Article  Google Scholar 

  • Svoma BM, Fox NI, Pallardy Q, Udawatta RP (2016) Evapotranspiration differences between agroforestry and grass buffer systems. Agric Water Manag 176:214–221. https://doi.org/10.1016/j.agwat.2016.06.018

    Article  Google Scholar 

  • Thorup-Kristensen K, Rasmussen CR (2015) Identifying new deep rooted plant species suitable as underground nitrogen catch crops. J. Soil Water Conserv 70:399–409

    Article  Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Turbé A, DeToni A, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats, and tools for policymakers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission, DG Environment

    Google Scholar 

  • Udawatta RP, Anderson SH (2008) CT-measured pore characteristics of surface and subsurface soils as influenced by agroforestry and grass buffers. Geoderma 145:381–389. https://doi.org/10.1016/j.geoderma.2008.04.004

    Article  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31:1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Udawatta RP, Motavalli PP, Garrett HE (2004) Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils. J Environ Qual 33:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Udawatta RP, Nygren PO, Garrett HE (2005) Growth of three oak species during establishment in an agroforestry practice for watershed protection. Can J For Res 35:602–609

    Article  Google Scholar 

  • Udawatta RP, Motavalli PP, Garrett HE (2006a) Nitrogen losses in runoff from three adjacent agricultural watersheds with claypan soils. Agric Ecosyst Environ 117:39–48

    Article  CAS  Google Scholar 

  • Udawatta RP, Anderson SH, Gantzer CJ, Garrett HE (2006b) Agroforestry and grass buffer influence on macropore characteristics: a computed tomography analysis. Soil Sci Soc Am J 70:1763–1773

    Article  CAS  Google Scholar 

  • Udawatta RP, Gantzer CJ, Anderson SH, Garrett HE (2008) Agroforestry and grass buffer effects on high resolution X-ray CT-measured pore characteristics. Soil Sci Soc Am J 72:295–304. https://doi.org/10.2136/sssaj2007.0057

    Article  Google Scholar 

  • Udawatta RP, Kremer RJ, Garrett HE, Anderson SH (2009) Soil enzyme activities and physical properties in a watershed managed under agroforestry and row-crop systems. Agric Ecosyst Environ 131:98–104

    Article  CAS  Google Scholar 

  • Udawatta RP, Garrett HE, Kallenbach RL (2010) Agroforestry and grass buffer effects on water quality in grazed pastures. Agrofor Syst 79(1):81–87. https://doi.org/10.1007/s10457-010-9288-9

    Article  Google Scholar 

  • Udawatta RP, Garrett HE, Kallenbach RL (2011a) Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds. J Environ Qual 40(3):800–806

    Article  CAS  PubMed  Google Scholar 

  • Udawatta RP, Anderson SH, Motavalli PP, Garrett HE (2011b) Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agrofor Syst 82:61–75. https://doi.org/10.1007/s10457-010-9362-3

    Article  Google Scholar 

  • Udawatta RP, Gantzer CJ, Jose S (2017) Agroforestry practices and soil ecosystem services. In: Al-Kaisi MM, Lowery B (eds) Soil health and intensification of agroecosystems. Elsevier AP, USA, pp 305–334

    Chapter  Google Scholar 

  • Udawatta RP, Rankoth LM, Jose S (2019) Agroforestry and biodiversity. Sustainability 11, 02879, 22p. doi:https://doi.org/10.3390/su11102879

    Article  Google Scholar 

  • Udawatta RP, Anderson SH, Kremer RJ, Garrett HE (2020) Soil benefits of agroforestry. In: Garrett HE, Jose S, Gold M (eds) North American agroforestry: an integrated science and practice, 3rd edn. American Society of Agronomy-Crop Science Society of America-Soil Science Society of America (ASA-CSSA-SSSA), Madison, WI

    Google Scholar 

  • Unger IM, Goyne KW, Kremer RJ, Kennedy AC (2013) Microbial community diversity in agroforestry and grass vegetative filter strips. Agrofor Syst 87:395–402

    Article  Google Scholar 

  • Uri ND (2001) The environmental implications of soil erosion in the United States. Environ Monit Assess 66:293–312

    Article  CAS  PubMed  Google Scholar 

  • USDA-ERS (2012). https://www.ers.usda.gov/amber-waves/2012/march/data-feature-how-is-land-used/. Accessed 23 Feb 2020

  • USDA-NRCS (2007a) Summary Report 2007 National Resources Inventory. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1041379.pdf. Accessed 30 Mar 2020

  • USDA-NRCS (2007b) Soil erosion on cropland 2007. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/?cid=stelprdb1041887. Accessed 15 Apr 2019

  • USDA-NRCS (2012) Assessment of the effects of conservation practices on cultivated cropland in the Missouri River Basin. USDA-NRCS. 225

    Google Scholar 

  • USDA-NRCS (2013) Assessment of the effects of conservation practices on cultivated cropland in the Lower Mississippi River Basin

    Google Scholar 

  • USEPA (1993) Paired watershed study design 841-F-93-009. Office of Water, United States Environmental Protection Agency, Washington, DC, pp 2–460

    Google Scholar 

  • USEPA (2017) National water quality inventory: report to congress. U.S Environ Prot Agency: 1–22. https://www.epa.gov/sites/production/files/2017-12/documents/305brtc_finalowow_08302017.pdf

  • Varah A, Jones H, Smith J, Potts SG (2013) Enhanced biodiversity and pollination in UK agroforestry systems. J Sci Food Agric 93(9):2073–2075

    Article  CAS  PubMed  Google Scholar 

  • Weerasekara C, Udawatta RP, Jose S, Kremer RJ, Weerasekara C (2016) Soil quality differences in a row-crop watershed with agroforestry and grass buffers. Agrofor Syst 90:829–838. https://doi.org/10.1007/s10457-016-9903-5

    Article  Google Scholar 

  • Wickramaratne N (2017) Hydrologic regime and nitrogen cycling: understanding the difference between claypan and loess watersheds in Missouri M.S. Thesis, University of Missouri

    Google Scholar 

  • Zhang Q, Zhang M, Zhou P, Fang Y, Ji Y (2018) Impact of tree species on barley rhizosphere-associated fungi in an agroforestry ecosystem as revealed by 18S rDNA PCRDGGE. Agrofor Syst 92:541–554

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjith P. Udawatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udawatta, R.P., Garrett, H.E., Jose, S., Lovell, S.T. (2021). Water Quality and Quantity Benefits of Agroforestry and Processes: Long-Term Case Studies from Missouri, USA. In: Udawatta, R.P., Jose, S. (eds) Agroforestry and Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-030-80060-4_6

Download citation

Publish with us

Policies and ethics