Skip to main content

The Role of Temperate Agroforestry Practices in Supporting Pollinators

  • Chapter
  • First Online:
Agroforestry and Ecosystem Services

Abstract

Agroforestry can provide ecosystem services and benefits such as soil erosion control, microclimate modification for yield enhancement, economic diversification, livestock production and well-being, and water quality protection. By adding increased structural and functional diversity in agricultural landscapes, agroforestry practices can also affect ecosystem services provided by insect pollinators. This chapter provides a summary of existing scientific information on how temperate agroforestry systems influence insect pollinators and their pollination services. Our assessment indicates that agroforestry practices can provide three primary benefits for pollinators: (1) providing habitat including foraging resources and nesting or egg-laying sites, (2) enhancing site and landscape connectivity, and (3) mitigating pesticide exposure. In some cases, agroforestry practices may contribute to unintended consequences such as becoming a sink for pollinators, where they may have increased exposure to pesticide residue that can accumulate in agroforestry practices. Through a more comprehensive understanding of the effects of agroforestry practices on pollinators and their key services, we can better design agroforestry systems to provide these benefits in addition to other desired ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 28 January 2022

    An error in the production process unfortunately led to publication of the book before incorporating the below corrections. This has now been corrected and updated throughout the book:

References

  • Adamson NL, Ward T, Vaughan M (2011) Designed with pollinators in mind. Inside Agroforestry 20(1):8–10

    Google Scholar 

  • Aizen MA, Feinsinger P (1994) Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano’. Ecol Appl 4(2):378–392

    Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox P, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan G, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12(1):8–17

    Google Scholar 

  • Altizer SM, Oberhauser KS (1999) Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus). J Invertebr Pathol 74:76–88

    CAS  PubMed  Google Scholar 

  • Ascher JS, Pickering J (2020) Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://wwwdiscoverlifeorg/mp/20q?guide=Apoidea_species Accessed (27 Feb 2020)

  • Bankova VB, De Castro SL, Marcucci MC (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31(1):3–15

    CAS  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner DL, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci U S A 108(51):20645–20649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batra SWT (1985) Red maple (Acer rubrum L.), an important early spring food resource for honey bees and other insects. J Kans Entomol Soc 58(1):169–172

    Google Scholar 

  • Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MA, Morton RD, Smart SM, Memmott J (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530(7588):85–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422

    Google Scholar 

  • Bee Informed Partnership (2019) Colony Loss 2018-2019: Preliminary Results. https://beeinformed.org/wp-content/uploads/2019/11/2018_2019-Abstract.pdf. Accessed 30 Jan 2020

  • Benjamin FE, Reilly RJ, Winfree R (2014) Pollinator body size mediates the scale at which land use drives crop pollination services. J Appl Ecol 51(2):440–449

    Google Scholar 

  • Bentrup G, Hopwood J, Adamson NL, Vaughan M (2019) Temperate agroforestry systems and insect pollinators: a review. Forests 10(11):981. https://doi.org/10.3390/f10110981

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    CAS  PubMed  Google Scholar 

  • Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51:890–898

    Google Scholar 

  • Bosch J, Kemp WP (2001 How to manage the blue orchard bee as an orchard pollinator. http://agris.fao.org/agris-search/search.do?recordID=US201300072439. Accessed 30 Jan 2020

  • Boscolo D, Tokumoto PM, Ferreria PA, Ribeiro JW, dos Santos JS (2017) Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Persp Ecol Conserv 15(1):18–24

    Google Scholar 

  • Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49(21):12731–12740

    PubMed  Google Scholar 

  • Brittain C, Kremen C, Klein AM (2013) Biodiversity buffers pollination from changes in environmental conditions. Glob Chang Biol 19(2):540–547

    PubMed  Google Scholar 

  • Brosi BJ, Briggs HM (2013) Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc Natl Acad Sci U S A 110(32):13044–13048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brosi BJ, Daily GC, Shih TM, Oviedo F, Duran G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45(3):773–783

    Google Scholar 

  • Brown TK (2002) Creating and maintaining wildlife, insect, and fish habitat structures in dead wood. In: Proceedings of the symposium on the ecology and management of dead wood in western forests. PSW-GTR-181. USDA Forest Service, Pacific southwest Research Station, Albany, p 883–892

    Google Scholar 

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 73–113

    Google Scholar 

  • Buehler DM, Norris DR, Stutchbury BJM, Kopysh NC (2002) Food supply and parental feeding rates of hooded warblers in forest fragments. Wilson Bull 114(1):122–127

    Google Scholar 

  • Calder WA (2004) Rufous and broad-tailed hummingbirds—pollination, migration, and population biology. In: Nabhan P (ed) Conserving migratory pollinators and nectar corridors in Western North America. University of Arizona Press, Tucson, AZ, pp 59–79

    Google Scholar 

  • Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7(5):e37235. https://doi.org/10.1371/journal.pone.0037235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci U S A 108(2):662–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campagne P, Affre L, Baumel A, Roche P, Tatoni T (2009) Fine-scale response to landscape structure in Primula vulgaris Huds.: does hedgerow network connectedness ensure connectivity through gene flow? Popul Ecol 51(1):209–219

    Google Scholar 

  • Cane JH, Griswold T, Parker FD (2007) Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Ann Entomol Soc Am 100(3):350–358

    Google Scholar 

  • Cane JH, Minckley RL, Kervin LJ, Roulston TH, Williams NM (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16(2):632–644

    PubMed  Google Scholar 

  • Carvell C, Bourke AF, Dreier S, Freeman SN, Hulmes S, Jordan WC, Redhead JW, Sumner S, Wang J, Heard MS (2017) Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543(7646):547–549

    CAS  PubMed  Google Scholar 

  • Carvell C, Osborne JL, Bourke AFG, Freeman SN, Pywell RF, Heard MS (2011) Bumble bee species’ responses to a targeted conservation measure depend on landscape context and habitat quality. Ecol Appl 21(5):1760–1771

    CAS  PubMed  Google Scholar 

  • Castle D, Grass I, Westphal C (2019) Fruit quantity and quality of strawberries benefit from enhanced pollinator abundance at hedgerows in agricultural landscapes. Agric Ecosyst Environ 275:14–22

    Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut R 22(1):119–134

    CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut R 12(1):34–48

    CAS  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    CAS  PubMed  Google Scholar 

  • Chen L, Liu C, Zhang L, Zou R, Zhang Z (2017) Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci Rep 7:3206. https://doi.org/10.1038/s41598-017-03360-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu C, Zou R, Yang M, Zhang Z (2016) Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ Pollut 208:198–208

    CAS  PubMed  Google Scholar 

  • Colla SR, Otterstatter MC, Gegear RJ, Thomson JD (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Conserv 129:461–467

    Google Scholar 

  • Corbet SA (1990) Pollination and the weather. Isr J Bot 39:13–30

    Google Scholar 

  • Corbet SA, Fussell M, Ake R, Fraser A, Gunson C, Savage A, Smith K (1993) Temperature and the pollinating activity of social bees. Ecol Entomol 18(1):17–30

    Google Scholar 

  • Couthard E, McCollin D, Littlemore (2016) The use of hedgerows as flight paths by moths in intensive farmland landscapes. J Insect Conserv 20:345–350

    Google Scholar 

  • Crane E, Walker P (1985) Some nectar characteristics of certain important honey sources. Pszczel Zesz Naukowe 29:29–45

    Google Scholar 

  • Cranmer L, McCollin D, Ollerton J (2012) Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121(4):562–568

    Google Scholar 

  • Czerwinski MA, Sadd BM (2017) Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. J Exp Zool Part A 327(5):273–283

    CAS  Google Scholar 

  • Dainese M, Montecchiari S, Sitzia T, Sigura M, Marini L (2017) High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. J Appl Ecol 54:380–388

    Google Scholar 

  • Davis BNK, Williams CT (1990) Buffer zone widths for honeybees from ground and aerial spraying of insecticides. Environ Pollut 63(3):247–259

    CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  PubMed  Google Scholar 

  • Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One 8(8):e72016. https://doi.org/10.1371/journal.pone.0072016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirr MA (1990) Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. Stipes Publishing Co., Champaign

    Google Scholar 

  • Donkersley P (2019) Trees for bees. Agric Ecosyst Environ 270–271:79–83

    Google Scholar 

  • Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88:668–697

    Google Scholar 

  • Dover JW, Fry GLA (2001) Experimental simulation of some visual and physical components of a hedge and the effects on butterfly behaviour in an agricultural landscape. Entomol Exp Appl 100(2):221–233

    Google Scholar 

  • Dover J, Sparks T (2000) A review of the ecology of butterflies in British hedgerows. J Environ Manag 60(1):51–63

    Google Scholar 

  • Dover J, Sotherton N, Gobett K (1990) Reduced pesticide inputs on cereal field margins: the effects on butterfly abundance. Ecol Entomol 15(1):17–24

    Google Scholar 

  • Drescher N, Klein AM, Schmitt T, Leonhardt SD (2019) A clue on bee glue: new insight into the sources and factors driving resin intake in honeybees (Apis mellifera). PLoS One 14:e0210594. https://doi.org/10.1371/journal.pone.0210594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumroese K, Luna T (2016) Growing and marketing woody species to support pollinators: an emerging opportunity for forest, conservation, and native plant nurseries in the Northeastern US Tree Planters’ Notes 59(2):49–60 https://www.fs.usda.gov/treesearch/pubs/52882. Accessed 30 Jan 2020

  • Eilers EJ, Kremen C, Greenleaf SS, Garber AK, Klein AM (2011) Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS One 6(6):e21363. https://doi.org/10.1371/journal.pone.0021363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans AN, Llanos JE, Kunin WE, Evison SE (2018) Indirect effects of agricultural pesticide use on parasite prevalence in wild pollinators. Agric Ecosyst Environ 15(258):40–48

    Google Scholar 

  • Fallon C, Black SH, Shepherd M (2014) Butterflies and moths as pollinators. Wings 37(2). The xerces Society for Invertebrate Conservation

    Google Scholar 

  • Felsot AS, Unsworth JB, Linders JB, Roberts G, Rautman D, Harris C, Carazo E (2010) Agrochemical spray drift; assessment and mitigation—a review. J Environ Sci Heal B 46(1):1–23

    Google Scholar 

  • Fiedler AK, Landis DA, Arduser M (2012) Rapid shift in pollinator communities following invasive species removal. Restor Ecol 20(5):593–602

    Google Scholar 

  • Filipiak M (2019) Key pollen host plants provide balanced diets for wild bee larvae: a lesson for planting flower strips and hedgerows. J Appl Ecol 56:1410–1418

    CAS  Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2005) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4(1):e1. https://doi.org/10.1371/journal.pbio.0040001

    Article  CAS  PubMed Central  Google Scholar 

  • Forister ML, Jahner JP, Casner KL, Wilson JS, Shapiro AM (2011) The race is not to the swift: Long-term data reveal pervasive declines in California’s low-elevation butterfly fauna. Ecology 92(12):2222–2235

    PubMed  Google Scholar 

  • Forister ML, McCall AC, Sanders NJ, Fordyce JA, Thorne JH, O’Brien J, Waetjen DP, Shapiro AM (2010) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. PNAS 107(5):2088–2092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler J (2016) Specialist bees of the northeast: host plants and habitat conservation. Northeast Nat 23:305–320

    Google Scholar 

  • Frankie GW, Vinson SB, Newstrom LE, Barthell JF, Haber WA, Frankie JK (1990) Plant phenology, pollination ecology, pollinator behaviour and conservation of pollinators in Neotropical dry forest. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. Parthenon Publishing Group, Paris, pp 37–47

    Google Scholar 

  • Fried JH, Levey DJ, Hogsette JA (2005) Habitat corridors function as both drift fences and movement conduits for dispersing flies. Oecologia 143(4):645–651

    PubMed  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhöffer JH, Greenleaf SS, Holzschuh A (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072

    PubMed  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339(6127):1608–1611

    CAS  PubMed  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71(5):757–764

    Google Scholar 

  • Ghisalberti EL (1979) Propolis: a review. Bee World 60:59–84

    CAS  Google Scholar 

  • Gilchrist A, Barker A, Handley JF (2016) Pathways through the landscape in a changing climate: the role of landscape structure in facilitating species range expansion through an urbanised region. Landsc Res 41(1):26–44

    Google Scholar 

  • Graham JB, Nassauer JI (2019) Wild bee abundance in temperate agroforestry landscapes: assessing effects of alley crop composition, landscape configuration, and agroforestry area. Agrofor Syst 93:837–850

    Google Scholar 

  • Grant V (1994) Historical development of ornithophily in the western North American flora. Proc Natl Acad Sci U S A 91:10407–10411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenaway W, Scaysbrook T, Whatley FR (1990) The composition and plant origins of propolis: a report of work at Oxford. Bee World 71(3):107–118

    Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    PubMed  Google Scholar 

  • Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622

    Google Scholar 

  • Hannon LE, Sisk TD (2009) Hedgerows in an agri-natural landscape: potential habitat value for native bees. Biol Conserv 142(10):2140–2154

    Google Scholar 

  • Hatfield RG, Colla SR, Jepsen S, Richardson LL, Thorp RW (2014) International Union for the Conservation of nature (IUCN) assessments for North American Bombus spp. for the North American IUCN bumble bee specialist group. The Xerces Society for Invertebrate Conservation, Portland. https://xerces.org/sites/default/files/publications/14-065.pdf. Accessed 6 Feb 2020

  • Haydak MH (1958) Wintering of bees in Minnesota. J Econ Entomol 51(3):332–334

    Google Scholar 

  • Hill DB, Webster TC (1995) Apiculture and forestry (bees and trees). Agrofor Syst 29(3):313–320

    Google Scholar 

  • Hladik ML, Vandever M, Smalling KL (2016) Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci Total Environ 542:469–477

    CAS  PubMed  Google Scholar 

  • Hopwood J, Code A, Vaughan M, Biddinger D, Shepherd M, Black SH, Lee-Mäder E, Mazzacano, C (2016) How neonicotinoids can kill bees. Xerces Society for Invertebrate Conservation, Portland. http://www.xerces.org/neonicotinoids-and-bees. Accessed 30 Jan 2020

  • IPBES (2016) Assessment report on pollinators, pollination and food production. Intergovernmental science-policy platform on biodiversity and ecosystem services, Bonn, Germany. https://ipbes.net/assessment-reports/pollinators. Accessed 30 Jan 2020

  • Inouye DW, Larson BM, Ssymank A, Kevan PG (2015) Flies and flowers III: ecology of foraging and pollination. J Pollinat Ecol 16(16):115–133

    Google Scholar 

  • Javorek SK, Mackenzie KE, Vander Kloet SP (2002) Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angustifolium). Ann Entomol Soc Am 95:345–351

    Google Scholar 

  • Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434

    CAS  PubMed  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Google Scholar 

  • Kay S, Kühn E, Albrecht M, Sutter L, Szerencsits E, Herzog F (2019) Agroforestry can enhance foraging and nesting resources for pollinators with focus on solitary bees at the landscape scale. Agrofor Syst 94(2):379–387. https://doi.org/10.1007/s10457-019-00400-9

    Article  Google Scholar 

  • Kearns CA (2001) North American dipteran pollinators: assessing their value and conservation status. Conserv Ecol 5(1):5. http://www.consecol.org/vol5/iss1/art5/. Accessed 30 Jan 2020

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. Bioscience 47(5):297–307

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–113

    Google Scholar 

  • Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol Conserv 109(2):165–174

    Google Scholar 

  • Kerr JT, Pindar A, Galpern P et al (2015) Climate change impacts on bumblebees converge across continents. Science 349(6244):177–180

    CAS  PubMed  Google Scholar 

  • Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74(1-3):373–393

    Google Scholar 

  • Kim J, Williams N, Kremen C (2006) Effects of cultivation and proximity to natural habitat on ground-nesting native bees in California sunflower fields. J Kansas Entomol Soc 79(4):309–320

    Google Scholar 

  • Kjær C, Bruus M, Bossi R, Løfstrøm P, Andersen HV, Nuyttens D, Larsen SE (2014) Pesticide drift deposition in hedgerows from multiple spray swaths. J Pestic Sci 39(1):14–21

    Google Scholar 

  • Kjøhl M, Nielsen A, Stenseth NC (2011) Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Klatt BKA, Holzschu A, Westphal C, Clough Y, Smit I, Pawelzik E, Tscharntke T (2014) Bee pollination improves crop quality, shelf life and commercial value. P Roy Soc B-Biol Sci 281:20132440. https://doi.org/10.1098/rspb.2013.2440

    Article  Google Scholar 

  • Klaus F, Bass J, Marholt L, Mulle B, Klatt B, Kormann U (2015) Hedgerows have a barrier effect and channel pollinator movement in the agricultural landscape. J Landsc Ecol 8(1):22–31

    Google Scholar 

  • Klein AM, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C (2012) Wild pollination services to California almond rely on semi-natural habitat. J Appl Ecol 49(3):723–732

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. P Roy Soc B-Biol Sci 274:303–313

    Google Scholar 

  • König B (1985) Plant sources of propolis. Bee World 66(4):136–139

    Google Scholar 

  • Kremen C, M’Gonigle LK (2015) Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol 52(3):602–610

    Google Scholar 

  • Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7(11):1109–1119

    Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99(26):16812–16816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF (2011) Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biol Conserv 144(6):1816–1825

    Google Scholar 

  • Krosby M, Tewksbury J, Haddad NM, Hoekstra J (2010) Ecological connectivity for a changing climate. Conserv Biol 24(6):1686–1689

    PubMed  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7(1):e29268. https://doi.org/10.1371/journal.pone.0029268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133(4):439–465

    Google Scholar 

  • Lazzaro L, Otto S, Zanin G (2008) Role of hedgerows in intercepting spray drift: evaluation and modelling of the effects. Agric Ecosyst Environ 123(4):317–327

    Google Scholar 

  • Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 7:11629. https://doi.org/10.1038/ncomms11629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loose J, Drummond F, Stubbs C, Woods S, Hoffman S (2005) Conservation and management of native bees in cranberry. Tech bull 191. Maine agricultural and Forest Experiment Station, Orono ME

    Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Google Scholar 

  • Lye G, Park K, Osborne J, Holland J, Goulson D (2009) Assessing the value of rural stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biol Conserv 142(10):2023–2032

    Google Scholar 

  • Macdonald KJ, Kelly D, Tylianakis JM (2018) Do local landscape features affect wild pollinator abundance, diversity and community composition on Canterbury farms? N Z J Ecol 42:262–268

    Google Scholar 

  • Macgregor CJ, Pocock MJ, Fox R, Evans DM (2015) Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol Entomol 40(3):187–198

    PubMed  Google Scholar 

  • Maudsley MJ (2000) A review of the ecology and conservation of hedgerow invertebrates in Britain. J Environ Manag 60(1):65–76

    Google Scholar 

  • McGregor SE (1976) Insect pollination of cultivated crop plants. Agricultural Research Service, Washington, DC. https://naldc.nal.usda.gov/download/CAT76674944/PDF#page=11. Accessed 30 Jan 2020

  • McKechnie IM, Thomsen CJM, Sargent RD (2017) Forested field edges support a greater diversity of wild pollinators in lowbush blueberry (Vaccinium angustifolium). Agric Ecosyst Environ 237:154–161

    Google Scholar 

  • McNaughton KG (1988) Effects of windbreaks on turbulent transport and microclimate. Agric Ecosyst Environ 22(23):17–40

    Google Scholar 

  • Meier K, Kuusemets V, Luig J, Mander U (2005) Riparian buffer zones as elements of ecological networks: case study on Parnassius mnemosyne distribution in Estonia. Ecol Eng 24:531–537

    Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc Roy Soc Lond B Bio 271:2605–2611

    Google Scholar 

  • Mercer GN (2009) Modelling to determine the optimal porosity of shelterbelts for the capture of agricultural spray drift. Environ Model Softw 24:1349–1352

    Google Scholar 

  • Merckx T, Marini L, Feber RE, Macdonald DW (2012) Hedgerow trees and extended-width field margins enhance macro-moth diversity: implications for management. J Appl Ecol 49(6):1396–1404

    Google Scholar 

  • Merrill JH (1923) Value of winter protection for bees. J Econ Entomol 16(2):125–130

    Google Scholar 

  • Michener CD (2007) The bees of the world. John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Miñarro M, Prida E (2013) Hedgerows surrounding organic apple orchards in north-west Spain: potential to conserve beneficial insects. Agric For Entomol 15(4):382–390

    Google Scholar 

  • Moisan-DeSerres J, Chagnon M, Fournier V (2015) Influence of windbreaks and forest borders on abundance and species richness of native pollinators in lowbush blueberry fields in Québec, Canada. Can Entomol 147(4):432–442

    Google Scholar 

  • Morandin LA, Kremen C (2013) Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol Appl 23(4):829–839

    PubMed  Google Scholar 

  • Morandin LA, Winston ML (2006) Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric Ecosyst Environ 116(3):289–292

    Google Scholar 

  • Morandin LA, Long RF, Kremen C (2014) Hedgerows enhance beneficial insects on adjacent tomato fields in an intensive agricultural landscape. Agric Ecosyst Environ 189:164–170

    Google Scholar 

  • Morandin LA, Long RF, Kremen C (2016) Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J Econ Entomol 109(3):1020–1027

    CAS  PubMed  Google Scholar 

  • Morse RA, Calderone NW (2000) The value of honey bees as pollinators of US crops in 2000. Bee Cult 128:1–15

    Google Scholar 

  • Nabhan GP, Brusca RC, Holter L (eds) (2004) Conserving migratory pollinators and nectar corridors in western North America. University of Arizona Press, Tucson

    Google Scholar 

  • Nair PR (2007) The coming of age of agroforestry. J Sci Food Agric 87:1613–1619

    CAS  Google Scholar 

  • National Research Council (2007) Status of pollinators in North America. National Academies Press, Washington, DC

    Google Scholar 

  • NatureServe (2018) Conservation status. http://explorer.natureserve.org/ranking.htm. Accessed 30 Jan 2020

  • Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems: a review. Agron Sustain Dev 33(2):257–274

    Google Scholar 

  • Norton RL (1988) Windbreaks: benefits to orchard and vineyard crops. Agric Ecosyst Environ 22(23):205–213

    Google Scholar 

  • Nye WP (1962) Extra supering and shading as factors in honey production in northern Utah. Glean Bee Cult 90(5):396–399

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  • Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376

    Google Scholar 

  • Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008a) Bumble bee flight distances in relation to the forage landscape. J Anim Ecol 77(2):406–415

    PubMed  Google Scholar 

  • Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME, Hale RJ, Sanderson RA (2008b) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45(3):784–792

    Google Scholar 

  • Ostaff DP, Mosseler A, Johns RC, Javorek S, Klymko J, Ascher JS (2015) Willows (Salix spp.) as pollen and nectar sources for sustaining fruit and berry pollinating insects. Can J Plant Sci 95(3):505–515

    Google Scholar 

  • Ottewell KM, Donnellan SC, Lowe AJ, Paton DC (2009) Predicting reproductive success of insect-versus bird-pollinated scattered trees in agricultural landscapes. Biol Conserv 142(4):888–898

    Google Scholar 

  • Otto S, Loddo D, Baldoin C, Zanin G (2015) Spray drift reduction techniques for vineyards in fragmented landscapes. J Environ Manag 162:290–298

    CAS  Google Scholar 

  • Ouin A, Burel F (2002) Influence of herbaceous elements on butterfly diversity in hedgerow agricultural landscapes. Agric Ecosyst Environ 93(1-3):45–53

    Google Scholar 

  • Papanikolaou AD, Kühn I, Frenzel M, Schweiger O (2017) Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol 54(2):527–536

    Google Scholar 

  • Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN (2015) Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc R Soc B 282(1809):20150299. https://doi.org/10.1098/rspb.2015.0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13(9):1860–1872

    Google Scholar 

  • Pasek JE (1988) Influence of wind and windbreaks on local dispersal of insects. Agric Ecosyst Environ 22:539–554

    Google Scholar 

  • Pavlidis G, Tsihrintzis VA (2017) Pollution control by agroforestry systems: a short review. Eur Water 59:297–301

    Google Scholar 

  • Pavlidis G, Tsihrintzis VA (2018) Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: a review. Water Res Manage 32(1):1–29

    Google Scholar 

  • Peri PL, Bloomberg M (2002) Windbreaks in southern Patagonia, Argentina: a review of research on growth models, windspeed reduction, and effects on crops. Agrofor Syst 56(2):129–144

    Google Scholar 

  • Pinzauti M (1986) The influence of the wind on nectar secretion from the melon and on the flight of bees: the use of an artificial wind-break. Apidologie 17(1):63–72

    Google Scholar 

  • Pleasants JM, Oberhauser KS (2012) Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv Divers 6(2):135–144

    Google Scholar 

  • Policarová J, Cardinal S, Martins AC, Straka J (2019) The role of floral oils in the evolution of apid bees (Hymenoptera: Apidae). Biol J Linn Soc 128:486–497

    Google Scholar 

  • Ponisio LC, M’gonigle LK, Kremen C (2016) On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob Chang Biol 22(2):704–715

    PubMed  Google Scholar 

  • Ponisio LC, de Valpine P, M’Gonigle LK, Kremen C (2019) Proximity of restored hedgerows interacts with local floral diversity and species′ traits to shape long-term pollinator metacommunity dynamics. Ecol Lett 22:1048–1060

    PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    PubMed  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84(10):2628–2642

    Google Scholar 

  • Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005) Role of nesting resources in organizing diverse bee communities in a Mediterranean landscape. Ecol Entomol 30(1):78–85

    Google Scholar 

  • Pywell RF, James KL, Herbert I, Meek WR, Carvell C, Bell D, Sparks TH (2005) Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biol Conserv 123(1):79–90

    Google Scholar 

  • Rendón-Salinas E, Tavera-Alonso G (2014) Monitoreo de la superficie forestal ocupada por las colonias de hibernación de la mariposa Monarca en diciembre de 2013. Alianza WWF-Telcel/CONANP

    Google Scholar 

  • Roulston TAH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312

    CAS  PubMed  Google Scholar 

  • Russo L, Danforth B (2017) Pollen preferences among the bee species visiting apple (Malus pumila) in New York. Apidologie 48:806–820

    Google Scholar 

  • Sánchez-Bayo F, Goka K (2014) Pesticide residues and bees–a risk assessment. PLoS One 9(4):e94482. https://doi.org/10.1371/journal.pone.0094482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N (2016) Are bee diseases linked to pesticides?—a brief review. Environ Int 89:7–11

    PubMed  Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Google Scholar 

  • Sardiñas HS, Kremen C (2015) Pollination services from field-scale agricultural diversification may be context-dependent. Agric Ecosyst Environ 207:17–25

    Google Scholar 

  • Sardiñas HS, Ponisio LC, Kremen C (2016a) Hedgerow presence does not enhance indicators of nest-site habitat quality or nesting rates of ground-nesting bees. Restor Ecol 24(4):499–505

    Google Scholar 

  • Sardiñas HS, Tom K, Ponisio LC, Rominger A, Kremen C (2016b) Sunflower (Helianthus annuus) pollination in California’s Central Valley is limited by native bee nest site location. Ecol Appl 26(2):438–447

    PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation – a review. Conserv Biol 5:18–32

    Google Scholar 

  • Schultz CB, Brown LM, Pelton E, Crone EE (2017) Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol Conserv 214:343–346

    Google Scholar 

  • Semmens BX, Semmens DJ, Thogmartin WE, Wiederholt R, López-Hoffman L, Diffendorfer JE, Pleasants JM, Oberhauser KS, Taylor OR (2016) Quasi-extinction risk and population targets for the eastern, migratory population of monarch butterflies (Danaus plexippus). Sci Rep 6:23265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senapathi D, Goddard MA, Kunin WE, Baldock KC (2017) Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct Ecol 31(1):26–37

    Google Scholar 

  • Settele J, Bishop J, Potts SG (2016) Climate change impacts on pollination. Nat Plants 2(7). https://doi.org/10.1038/nplants.2016.92

  • Shuler RE, Roulston TH, Farris GE (2005) Farming practices influence wild pollinator populations on squash and pumpkin. J Econ Entomol 98:790–795

    PubMed  Google Scholar 

  • Simone-Finstrom M, Borba RS, Wilson M, Spivak M (2017) Propolis counteracts some threats to honey bee health. Insects 8(2):46. https://doi.org/10.3390/insects8020046

    Article  PubMed Central  Google Scholar 

  • Sipes SD, Tepedino VJ (1995) Reproductive biology of the rare orchid, Spiranthes diluvialis: breeding system, pollination, and implications for conservation. Conserv Biol 9(4):929–938

    Google Scholar 

  • Smith BD, Lewis T (1972) The effects of windbreaks on the blossom-visiting fauna of apple orchards and on yield. Ann Appl Biol 72(3):229–238

    Google Scholar 

  • Smith J, Pearce BD, Wolfe MS (2013) Reconciling productivity with protection of the environment: is temperate agroforestry the answer? Renew Agr Food Syst 28(1):80–92

    Google Scholar 

  • Somme L, Moquet L, Quinet M, Vanderplanck M, Michez D, Lognay G, Jacquemart AL (2016) Food in a row: urban trees offer valuable floral resources to pollinating insects. Urban Ecosyst 19(3):1149–1161

    Google Scholar 

  • Spira TP (2001) Plant-pollinator interactions: a threatened mutualism with implications for the ecology and management of rare plants. Nat Area J 21(1):78–88

    Google Scholar 

  • Stanley J, Preetha G (2016) Pesticide toxicity to non-target organisms. Springer, Dordrecht

    Google Scholar 

  • Staton T, Walters RJ, Smith J, Girling RD (2019) Evaluating the effects of integrating trees into temperate arable systems on pest control and pollination. Agric Syst 176:102676

    Google Scholar 

  • Steffan-Dewenter I, Schiele S (2008) Do resources or natural enemies drive bee population dynamics in fragmented habitats. Ecology 89(5):1375–1387

    PubMed  Google Scholar 

  • Steffan-Dewenter I, Westphal C (2008) The interplay of pollinator diversity, pollination services and landscape change. J Appl Ecol 45(3):737–741

    Google Scholar 

  • Steingröver EG, Geertsema W, van Wingerden WK (2010) Designing agricultural landscapes for natural pest control: a transdisciplinary approach in the Hoeksche Waard (The Netherlands). Landsc Ecol 25(6):825–838

    Google Scholar 

  • Stubbs CS, Jacobson HA, Osgood EA, Drummond FA (1992) Alternative forage plants for native (wild) bees associated with lowbush blueberry, Vaccinium spp., in Maine. Tech Bull 148. Maine Agricultural Experiment Station, Orono

    Google Scholar 

  • Sutter L, Albrecht M, Jeanneret P (2018) Landscape greening and local creation of wildflower strips and hedgerows promote multiple ecosystem services. J Appl Ecol 55:612–620

    Google Scholar 

  • Svensson B, Lagerlöf J, Svensson BG (2000) Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agric Ecosyst Environ 77(3):247–255

    Google Scholar 

  • Tallamy DW, Shropshire KJ (2009) Ranking lepidopteran use of native versus introduced plants. Conserv Biol 23(4):941–947

    PubMed  Google Scholar 

  • Tasei JN, Aupinel P (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39(4):397–409

    CAS  Google Scholar 

  • Tepedino VJ (1981) The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J Kansas Entomol Soc 54(2):359–377

    Google Scholar 

  • Terzaghi E, Wild E, Zacchello G, Cerabolini BE, Jones KC, Di Guardo A (2013) Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos Environ 74:378–384

    CAS  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci U S A 99(20):12923–12926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timberlake TP, Vaughan IP, Memmott J (2019) Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J Appl Ecol 56:1585–1596

    Google Scholar 

  • Townsend PA, Levey DJ (2005) An experimental test of whether habitat corridors affect pollen transfer. Ecology 86(2):466–475

    Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol Appl 12(2):354–363

    Google Scholar 

  • Ucar T, Hall FR (2001) Windbreaks as a pesticide drift mitigation strategy: a review. Pest Manag Sci 57(8):663–675

    CAS  PubMed  Google Scholar 

  • Udawatta RP, Rankoth LM, Jose S (2019) Agroforestry and biodiversity. Sustainability 11:2879

    Google Scholar 

  • USDA (2014) Preventing or mitigating potential negative impacts of pesticides on pollinators using IPM and other conservation practices. US Department of Agriculture, Washington, DC. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1261468.pdf. Accessed 30 Jan 2020

  • US Fish and Wildlife Service (2006) Lesser long-nosed bat (Leptonycteris curasoae yerbabuenae) 5-year review: summary and evaluation. US fish and wildlife service. Phoenix, Arizona

    Google Scholar 

  • US Fish and Wildlife Service (2019) Rusty patched bumble bee listed as endangered. https://www.fws.gov/midwest/endangered/insects/rpbb/FAQsFinalListing.html. Accessed 30 Jan 2020

  • Valiente-Banuet A, Molina-Freaner F, Torres A, Arizmendi MC, Casas A (2004) Geographic differentiation in the pollination system of the columnar cactus Pachycereus pecten-aboriginum. Am J Bot 91:850–855

    PubMed  Google Scholar 

  • Vaughan M, Black SH (2006) Improving forage for native bee crop pollinators. Agroforestry Notes #33. USDA National Agroforestry Center, Lincoln

    Google Scholar 

  • Vaughan M, Adamson N, MacFarland K (2017) Using agroforestry practices to reduce pesticide risks to pollinators & other agriculturally beneficial insects. Agroforestry Notes #35. USDA National Agroforestry Center, Lincoln

    Google Scholar 

  • Venturini EM, Drummond FA, Hoshide AK, Dibble AC, Stack LB (2017) Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecol Sustain Food Syst 41:101–142

    Google Scholar 

  • Vicens N, Bosch J (2000) Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ Entomol 29(3):413–420

    Google Scholar 

  • Wcislo WT, Cane JH (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu Rev Entomol 41:257–286

    CAS  PubMed  Google Scholar 

  • Wenneker M, Van de Zande JC (2008) Spray drift reducing effects of natural windbreaks in orchard spraying. Asp Appl Biol 84:25–32

    Google Scholar 

  • Westerkamp C, Gottsberger G (2000) Diversity pays in crop pollination. Crop Sci 40:1209–1222

    Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336(6079):351–352

    CAS  PubMed  Google Scholar 

  • Williams NM, Kremen C (2007) Resource distribution among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl 17:910–921

    PubMed  Google Scholar 

  • Wood TJ, Kaplan I, Szendrei Z (2018) Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Front Ecol Evol 6:210. https://doi.org/10.3389/fevo.2018.00210

    Article  Google Scholar 

  • Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6:e14720. https://doi.org/10.1371/journal.pone.0014720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaady E, Katra I, Shuker S, Knoll Y, Shlomo S (2018) Tree belts for decreasing aeolian dust-carried pesticides from cultivated areas. Geosciences 8:286

    Google Scholar 

  • Zhang X, Liu X, Zhang M, Dahlgren RA, Eitzel M (2010) A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J Environ Qual 39(1):76–84

    CAS  PubMed  Google Scholar 

  • Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW (2016) Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc Roy Soc B-Biol Sci 283(1828):20160414

    Google Scholar 

Download references

Acknowledgements

We would like to thank Justin Runyon, Judy Wu-Smart, Michele Schoeneberger, Aimee Code, and two anonymous reviewers whose comments and feedback helped to improve the chapter. This work was supported by funding provided by a contribution agreement with the United States Department of Agriculture (USDA)-Natural Resources Conservation Service (NRCS) to the Xerces Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Bentrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bentrup, G., Hopwood, J., Adamson, N.L., Powers, R., Vaughan, M. (2021). The Role of Temperate Agroforestry Practices in Supporting Pollinators. In: Udawatta, R.P., Jose, S. (eds) Agroforestry and Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-030-80060-4_11

Download citation

Publish with us

Policies and ethics