Skip to main content

A Church-Turing Thesis for Randomness?

  • Conference paper
  • First Online:
Connecting with Computability (CiE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12813))

Included in the following conference series:

  • 754 Accesses

Abstract

We discuss the difficulties in stating an analogue of the Church-Turing thesis for algorithmic randomness. We present one possibility and argue that it cannot occupy the same position in the study of algorithmic randomness that the Church-Turing thesis does in computability theory. We begin by observing that some evidence comparable to that for the Church-Turing thesis does exist for this statement: in particular, there are other reasonable formalizations of the intuitive concept of randomness that lead to the same class of random sequences (the Martin-Löf random sequences). However, we consider three properties that we would like a random sequence to satisfy and find that the Martin-Löf random sequences do not necessarily possess these properties to a greater degree than other types of random sequences, and we further argue that there is no more appropriate version of the Church-Turing thesis for algorithmic randomness. This suggests that consensus around a version of the Church-Turing thesis in this context is unlikely.

Supported in part by Simons Foundation Collaboration Grant #420806.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that there are other randomness notions that also exhibit computational weakness, e.g., weak 2-randomness. However, we discuss difference randomness here because the difference random sequences can be identified as the Martin-Löf random sequences that are computationally weak in these two standard senses.

  2. 2.

    The reader may have noted that we are working in a general computable probability space rather than the Cantor space. This is possible because any computable probability space is isomorphic to the Cantor space in every relevant way and our notions of randomness transfer naturally [13].

  3. 3.

    There is a subtlety in this result in that an incomputable function may be computable as a vector, hence the “essentially."

References

  1. Bauwens, B.: Uniform van Lambalgen’s theorem fails for computable randomness. ArXiv e-prints (2015)

    Google Scholar 

  2. Bienvenu, L., Day, A., Mezhirov, I., Shen, A.: Ergodic-type characterizations of algorithmic randomness. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 49–58. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13962-8_6

    Chapter  Google Scholar 

  3. Brattka, V., Miller, J.S., Nies, A.: Randomness and differentiability. Trans. Amer. Math. Soc. 368(1), 581–605 (2016)

    Google Scholar 

  4. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput. Mach. 22, 329–340 (1975)

    Article  MathSciNet  Google Scholar 

  5. Downey, R.G., Griffiths, E.J.: Schnorr randomness. J. Symbolic Logic 69(2), 533–554 (2004)

    Article  MathSciNet  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, New York (2010)

    Book  Google Scholar 

  7. Franklin, J.N., Greenberg, N., Miller, J.S., Ng, K.M.: Martin-Löf random points satisfy Birkhoff’s ergodic theorem for effectively closed sets. In: Proceedings of the American Mathematical Society, vol. 140, no. 10, pp. 3623–3628 (2012)

    Google Scholar 

  8. Franklin, J.N., McNicholl, T.H., Rute, J.: Algorithmic randomness and Fourier analysis. Theory Comput. Syst. 63(3), 567–586 (2019)

    Google Scholar 

  9. Franklin, J.N., Ng, K.M.: Difference randomness. In: Proceedings of the American Mathematical Society, vol. 139, no. 1, pp. 345–360 (2011)

    Google Scholar 

  10. Franklin, J.N., Stephan, F.: Van Lambalgen’s theorem and high degrees. Notre Dame J. Formal Logic 52(2), 173–185 (2011)

    Article  MathSciNet  Google Scholar 

  11. Franklin, J.N., Towsner, H.: Randomness and non-ergodic systems. Mosc. Math. J. 14(4), 711–744 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gács, P., Hoyrup, M., Rojas, C.: Randomness on computable probability spaces–a dynamical point of view. Theory Comput. Syst. 48(3), 465–485 (2011). https://doi.org/10.1007/s00224-010-9263-x. http://dx.doi.org/10.1007/s00224-010-9263-x

  13. Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf randomness over metric spaces. Inform. Comput. 207(7), 830–847 (2009). https://doi.org/10.1016/j.ic.2008.12.009. http://dx.doi.org/10.1016/j.ic.2008.12.009

  14. Kučera, A.: Measure, \(\pi ^0_1\), -classes and complete extensions of PA. In: Ebbinghaus, H.-D., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory Week. LNM, vol. 1141, pp. 245–259. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0076224

    Chapter  Google Scholar 

  15. van Lambalgen, M.: The axiomatization of randomness. J. Symbolic Logic 55(3), 1143–1167 (1990)

    Article  MathSciNet  Google Scholar 

  16. Levin, L.A.: Some Theorems on the Algorithmic Approach to Probability Theory and Information Theory. Ph.D. thesis, Moscow University (1971)

    Google Scholar 

  17. Levin, L.A.: Laws on the conservation (zero increase) of information, and questions on the foundations of probability theory. Problemy Peredači Informacii 10(3), 30–35 (1974)

    MathSciNet  Google Scholar 

  18. Lévy, P.: Téorie de l’Addition des Variables Aléatoires. Gauthier-Villars, Paris (1937)

    MATH  Google Scholar 

  19. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  20. Miyabe, K.: Truth-table Schnorr randomness and truth-table reducible randomness. MLQ Math. Log. Q. 57(3), 323–338 (2011). https://doi.org/10.1002/malq.200910128. http://dx.doi.org/10.1002/malq.200910128

  21. Miyabe, K., Rute, J.: van Lambalgen’s theorem for uniformly relative Schnorr and computable randomness. In: Downey, R., et al. (eds.) Proceedings of the Twelfth Asian Logic Conference, pp. 251–270. World Scientific (2013)

    Google Scholar 

  22. Nies, A.: Computability and Randomness. Clarendon Press, Oxford (2009)

    Book  Google Scholar 

  23. Porter, C.P.: The equivalence of definitions of algorithmic randomness. Philosophia Mathematica To appear

    Google Scholar 

  24. Porter, C.P.: On analogues of the Church-Turing thesis in algorithmic randomness. Rev. Symb. Log. 9(3), 456–479 (2016). https://doi.org/10.1017/S1755020316000113. https://doi.org.ezproxy.hofstra.edu/10.1017/S1755020316000113

  25. Rute, J.: Topics in Algorithmic Randomness and Computable Analysis. Ph.D. thesis, Carnegie Mellon University (2013)

    Google Scholar 

  26. Rute, J.: Algorithmic randomness and computable measure theory. In: Franklin, J.N., Porter, C.P. (eds.) Algorithmic Randomness: Progress and Prospects, pp. 58–114. Cambridge University Press, New York, NY (2020)

    Chapter  Google Scholar 

  27. Schnorr, C.: A unified approach to the definition of random sequences. Math. Syst. Theory 5, 246–258 (1971)

    Article  MathSciNet  Google Scholar 

  28. Schnorr, C.P.: Invarianzeigenschaften von Zufallsfolgen. Zufälligkeit und Wahrscheinlichkeit. LNM, vol. 218, pp. 83–88. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0112470

    Chapter  Google Scholar 

  29. Stephan, F.: Martin-Löf Random and PA-complete Sets. Tech. Rep. 58, Matematisches Institut, Universität Heidelberg, Heidelberg (2002)

    Google Scholar 

  30. Turing, A.M.: Intelligent machinery. Tech. rep, National Physical Laboratory (1948)

    Google Scholar 

  31. V\(^{\prime }\)yugin, V.V.: Effective convergence in probability, and an ergodic theorem for individual random sequences. Teor. Veroyatnost. i Primenen. 42(1), 35–50 (1997). https://doi.org/10.1137/S0040585X97975915. http://dx.doi.org/10.1137/S0040585X97975915

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna N. Y. Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franklin, J.N.Y. (2021). A Church-Turing Thesis for Randomness?. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80049-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80048-2

  • Online ISBN: 978-3-030-80049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics