Skip to main content

Impact of Endocrine Disruptors on Male Sexual Development

  • Chapter
  • First Online:
Pediatric and Adolescent Andrology

Part of the book series: Trends in Andrology and Sexual Medicine ((TASM))

  • 649 Accesses

Abstract

Many andrological pathologies seen in adults, including infertility, actually arose in younger age, due to the strong susceptibility and vulnerability of male gonads to external insults, starting from gestational age and during all growth phases. Three main phases are particularly susceptible for normal testis development and function: the intrauterine phase, the neonatal phase comprising the so-called minipuberty, and puberty. However, even during infancy, when the testes are apparently “sleeping,” damaging causes with permanent effects on testicular function can occur. Among risk factors for alterations of sexual and reproductive organs and function, endocrine-disrupting chemicals (EDCs) have gained particular attention in the last decades, given their ability to disrupt them at different levels and at different ages, with long-term consequences and possibly also transgenerational effects. Bisphenol A, phthalates, and perfluoroalkyl substances are particularly intriguing chemicals, given the strong experimental evidence suggesting effects on hormone nuclear receptors, hypothalamus-pituitary-testis axis, and direct action on spermatogenesis and steroidogenesis. Although epidemiological studies in humans have shown controversial and inconsistent results, the overall conclusion points toward a positive association between exposure to EDCs and alteration of male reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP. Challenges of infectious diseases in the USA. Lancet. 2014;384:53–63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Slater C, Robinson AJ. Sexual health in adolescents. Clin Dermatol. 2014;32:189–95.

    Article  PubMed  Google Scholar 

  3. Stephen EH, Chandra A, King RB. Supply of and demand for assisted reproductive technologies in the United States: clinic- and population-based data, 1995-2010. Fertil Steril. 2016;105:451–8.

    Article  PubMed  Google Scholar 

  4. Nigam M, Aschebrook-Kilfoy B, Shikanov S, Eggener S. Increasing incidence of testicular cancer in the United States and Europe between 1992 and 2009. World J Urol. 2015;33:623–31.

    Article  PubMed  Google Scholar 

  5. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.

    Article  CAS  PubMed  Google Scholar 

  6. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–E150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:1697–712.

    Article  CAS  Google Scholar 

  8. Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016;4:254–64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, Hougaard KS, Høyer BB, Hærvig KK, Petersen SB, Rylander L, Specht IO, Toft G, Bräuner EV. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23(1):104–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pallotti F, Pelloni M, Gianfrilli D, Lenzi A, Lombardo F, Paoli D. Mechanisms of testicular disruption from exposure to bisphenol A and phthalates. J Clin Med. 2020;9(2):pii: E471.

    Article  CAS  Google Scholar 

  11. Di Nisio A, Foresta C. Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reprod Biol Endocrinol. 2019;17(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murata M, Kang JH. Bisphenol A and all cell signaling pathways. Biotechnol Adv. 2017;36:311–27.

    Article  PubMed  CAS  Google Scholar 

  13. Lyons G. Bisphenol Q: a known endocrine disruptor. A WWF European toxics programme report. WWF European toxics programme: Godalming, Surrey. Registered Charity No 201707; 2000. http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjQ4uXOnoDoAhWttIsKHeNUAywQFjAAegQIBxAB&url=http%3A%2F%2Fassets.panda.org%2Fdownloads%2Fbisphenol.pdf&usg=AOvVaw1KMvI7KSfb4MEwV1Ce3KvD

  14. Ehrlich S, Calafat AM, Humblet O, Smith T, Hauser R. Handling of thermal receipts as a source of exposure to bisphenol a. JAMA. 2014;311:859–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pivnenko K, Pedersen GA, Eriksson E, Astrup TF. Bisphenol A and its structural analogues in household waste paper. Waste Manag. 2015;44:39–47.

    Article  CAS  PubMed  Google Scholar 

  16. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24:139–77.

    Article  CAS  PubMed  Google Scholar 

  17. Vandenberg LN, Hunt PA, Myers JP, vom Saal FS. Human exposures to bisphenol A: mismatches between data and assumptions. Rev Environ Health. 2013;28:37–58.

    Article  CAS  PubMed  Google Scholar 

  18. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116:39–44.

    Article  CAS  PubMed  Google Scholar 

  19. Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, Safe S, McDonnell DP, Gaido KW. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998;142:203–14.

    Article  CAS  PubMed  Google Scholar 

  20. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139:4252–63.

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Wang Q, Zhang Y, Niu Y, Yao X, Liu H. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations. PLoS One. 2015;10:e0120330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24:199–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Viñas R, Jeng YJ, Watson CS. Non-genomic effects of xenoestrogen mixtures. Int J Environ Res Public Health. 2012;9:2694–714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dong S, Terasaka S, Kiyama R. Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut. 2011;159:212–8.

    Article  CAS  PubMed  Google Scholar 

  25. Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect. 2005;113:431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata SI, Kimura M, Shimohigashi Y. Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma. J Biochem. 2007;142:517–24.

    Article  CAS  PubMed  Google Scholar 

  27. Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A, Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ Health Perspect. 2008;116:32–8.

    Article  CAS  PubMed  Google Scholar 

  28. Al-Hiyasat AS, Darmani H, Elbetieha AM. Effects of bisphenol A on adult male mouse fertility. Eur J Oral Sci. 2002;110:163–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wisniewski P, Romano RM, Kizys MML, Oliveira KC, Kasamatsu T, Giannocco G, Chiamolera MI, Dias-da-Silva MR, Romano MA. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology. 2015;329:1–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gurmeet K, Rosnah I, Normadiah MK, Das S, Mustafa AM. Detrimental effects of bisphenol A on development and functions of the male reproductive system in experimental rats. EXCLI J. 2014;13:151–60.

    PubMed  PubMed Central  Google Scholar 

  31. Dobrzynska MM, Radzikowska J. Genotoxicity and reproductive toxicity of bisphenol A and X-ray/bisphenol A combination in male mice. Drug Chemical Toxicol. 2013;36:19–26.

    Article  CAS  Google Scholar 

  32. Tainaka H, Takahashi H, Umezawa M, Tanaka H, Nishimune Y, Oshio S, Takeda K. Evaluation of the testicular toxicity of prenatal exposure to bisphenol A based on microarray analysis combined with MeSH annotation. J Toxicol Sci. 2012;37:539–48.

    Article  CAS  PubMed  Google Scholar 

  33. Tiwari D, Vanage G. Mutagenic effect of bisphenol A on adult rat male germ cells and their fertility. Reprod Toxicol (Elmsford, NY). 2013;40:60–8.

    Article  CAS  Google Scholar 

  34. Salian S, Doshi T, Vanage G. Neonatal exposure of male rats to bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology. 2009;265:56–67.

    Article  CAS  PubMed  Google Scholar 

  35. Qiu LL, Wang X, Zhang XH, Zhang Z, Gu J, Liu L, Wang Y, Wang X, Wang SL. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol Lett. 2013;219:116–24.

    Article  CAS  PubMed  Google Scholar 

  36. Tiwari D, Vanage G. Mutagenic effect of bisphenol A on adult rat male germ cells and their fertility. Reprod Toxicol. 2013;40:60–8.

    Article  CAS  PubMed  Google Scholar 

  37. Minamiyama Y, Ichikawa H, Takemura S, Kusunoki H, Naito Y, Yoshikawa T. Generation of reactive oxygen species in sperms of rats as an earlier marker for evaluating the toxicity of endocrine-disrupting chemicals. Free Radic Res. 2010;44:1398–406.

    Article  CAS  PubMed  Google Scholar 

  38. Chitra KC, Latchoumycandane C, Mathur PP. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology. 2003;185:119–27.

    Article  CAS  PubMed  Google Scholar 

  39. Liu C, Duan W, Li R, Xu S, Zhang L, Chen C, He M, Lu Y, Wu H, Pi H, Luo X, Zhang Y, Zhong M, Yu Z, Zhou Z. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis. 2013;4:e676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rashid H, Ahmad F, Rahman S, Ansari RA, Bhatia K, Kaur M, Islam F, Raisuddin S. Iron deficiency augments bisphenol A-induced oxidative stress in rats. Toxicology. 2009;256:7–12.

    Article  CAS  PubMed  Google Scholar 

  41. Wu HJ, Liu C, Duan WX, Xu SC, He MD, Chen CH, Wang Y, Zhou Z, Yu ZP, Zhang L, Chen Y. Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats. Mutat Res. 2013;752:57–67.

    Article  CAS  PubMed  Google Scholar 

  42. D’Cruz SC, Jubendradass R, Jayakanthan M, Rani SJ, Mathur PP. Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study. Food Chem Toxicol. 2012;50:1124–33.

    Article  PubMed  CAS  Google Scholar 

  43. Kabuto H, Hasuike S, Minagawa N, Shishibori T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res. 2003;93:31–5.

    Article  CAS  PubMed  Google Scholar 

  44. Anjum S, Rahman S, Kaur M, Ahmad F, Rashid H, Ansari RA, Raisuddin S. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol. 2011;49:2849–54.

    Article  CAS  PubMed  Google Scholar 

  45. Fang Y, Zhou Y, Zhong Y, Gao X, Tan T. Effect of vitamin E on reproductive functions and anti-oxidant activity of adolescent male mice exposed to bisphenol A. Wei Sheng Yan Jiu. 2013;42:18–22.

    CAS  PubMed  Google Scholar 

  46. El-Beshbishy HA, Aly HA, El-Shafey M. Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats. Toxicol Ind Health. 2013;29:875–87.

    Article  CAS  PubMed  Google Scholar 

  47. Lan HC, Wu KY, Lin IW, Yang ZJ, Chang AA, Hu MC. Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. Chemosphere. 2017;185:237–46.

    Article  CAS  PubMed  Google Scholar 

  48. Gonçalves GD, Semprebon SC, Biazi BI, Mantovani MS, Fernandes GSA. Bisphenol A reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reprod Toxicol. 2018;76:26–34.

    Article  PubMed  CAS  Google Scholar 

  49. Xi W, Lee CK, Yeung WS, Giesy JP, Wong MH, Zhang X, Hecker M, Wong CKC. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. Reprod Toxicol. 2011;31:409–17.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang T, Sun H, Kannan K. Blood and urinary bisphenol A concentrations in children, adults, and pregnant women from China: partitioning between blood and urine and maternal and fetal cord blood. Environ Sci Technol. 2013;47:4686–94.

    Article  CAS  PubMed  Google Scholar 

  51. Wan Y, Choi K, Kim S, Ji K, Chang H, Wiseman S, Jones PD, Khim JS, Park S, Park J, Lam MHW, Giesy JP. Hydroxylated polybrominated diphenyl ethers and bisphenol A in pregnant women and their matching fetuses: placental transfer and potential risks. Environ Sci Technol. 2010;44:5233–9.

    Article  CAS  PubMed  Google Scholar 

  52. Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD. Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol. 2010;202:393e1.

    Article  CAS  Google Scholar 

  53. Ben Maamar M, Lesné L, Desdoits-Lethimonier C, Coiffec I, Lassurguère J, Lavoué V, Deceuninck Y, Antignac JP, Le Bizec B, Perdu E, Zalko D, Pineau C, Chevrier C, Dejucq-Rainsford N, Mazaud-Guittot S, Jégou B. An investigation of the endocrine-disruptive effects of bisphenol a in human and rat fetal testes. PLoS One. 2015;10:e0117226.

    Article  PubMed  CAS  Google Scholar 

  54. Lv Y, Li L, Fang Y, Chen P, Wu S, Chen X, Ni C, Zhu Q, Huang T, Lian Q, Ge RS. In utero exposure to bisphenol A disrupts fetal testis development in rats. Environ Pollut. 2019;246:217–24.

    Article  CAS  PubMed  Google Scholar 

  55. Hong J, Chen F, Wang X, Bai Y, Zhou R, Li Y, Chen L. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol Cell Endocrinol. 2016;427:101–11.

    Article  CAS  PubMed  Google Scholar 

  56. Salian S, Doshi T, Vanage G. Perinatal exposure of rats to bisphenol A affects the fertility of male offspring. Life Sci. 2009;85:742–52.

    Article  CAS  PubMed  Google Scholar 

  57. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8:e55387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li DK, Zhou Z, Miao M, He Y, Wang J, Ferber J, Herrinton LJ, Gao E, Yuan W. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril. 2011;95:625–30.

    Article  CAS  PubMed  Google Scholar 

  59. Meeker JD, Ehrlich S, Toth TL, Wright DL, Calafat AM, Trisini AT, Ye X, Hauser R. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol. 2010;30:532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goldstone AE, Chen Z, Perry MJ, Kannan K, Louis GM. Urinary bisphenol A and semen quality, the LIFE study. Reprod Toxicol. 2015;51:7–13.

    Article  CAS  PubMed  Google Scholar 

  61. Mendiola J, Jorgensen N, Andersson AM, Calafat AM, Ye X, Redmon JB, Drobnis EZ, Wang C, Sparks A, Thurston SW, Liu F, Swan SH. Are environmental levels of bisphenol a associated with reproductive function in fertile men? Environ Health Perspect. 2010;118:1286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hanaoka T, Kawamura N, Hara K, Tsugane S. Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med. 2002;59:625–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, Money C, McCormak P, Merlzer D. Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect. 2010;118:1603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Joensen UN, Main KM, Skakkebaek NE, Juul A, Jørgensen N, Andersson AM. Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality. Environ Health Perspect. 2014;122:478–84.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dodge LE, Williams PL, Williams MA, Missmer SA, Toth TL, Calafat AM, Hauser R. Paternal urinary concentrations of parabens and other phenols in relation to reproductive outcomes among couples from a fertility clinic. Environ Health Perspect. 2015;123:665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buck Louis GM, Sundaram R, Sweeney AM, Schisterman EF, Maisog J, Kannan K. Urinary bisphenol A, phthalates, and couple fecundity: the longitudinal investigation of fertility and the environment (LIFE) study. Fertil Steril. 2014;101:1359–66.

    Article  CAS  PubMed  Google Scholar 

  67. Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. Bisphenol a and reproductive health: update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014;122:775–86.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vitku J, Heracek J, Sosvorova L, Hampl R, Chlupacova T, Hill M, Sobotka V, Bicikova M, Starka L. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. Environ Int. 2016;89–90:66–173.

    Google Scholar 

  69. EFSA COMMISSION REGULATION (EU) 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use WHO—endocrine disrupting chemicals; 2012.

    Google Scholar 

  70. Barr DB, Silva MJ, Kato K, Reidy JA, Malek NA, Hurtz D, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect. 2003;111:1148–51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Guo Y, Wu Q, Kannan K. Phthalate metabolites in urine from China, and implications for human exposures. Environ Int. 2011;37:893–8.

    Article  CAS  PubMed  Google Scholar 

  72. Guo Y, Weck J, Sundaram R, Goldstone AE, Louis GB, Kannan K. Urinary concentrations of phthalates in couples planning pregnancy and its association with 8-hydroxy-2′-deoxyguanosine, a biomarker of oxidative stress: longitudinal investigation of fertility and the environment study. Environ Sci Technol. 2014;48:9804–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Skinner MK. Endocrine disruptors in 2015: epigenetic transgenerational inheritance. Nat Rev Endocrinol. 2015;12:68–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Meeker JD, Ferguson KK. Urinary phthalate metabolites are associated with decreased serum testosterone in men, women, and children from NHANES 2011-2012. J Clin Endocrinol Metab. 2014;99:4346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bao A-M, Man X-M, Guo X-J, Dong H-B, Wang F-Q, Sun H, et al. Effects of di-n-butyl phthalate on male rat reproduction following pubertal exposure. Asian J Androl. 2011;13:702–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bloom MS, Whitcomb BW, Chen Z, Ye A, Kannan K, Buck Louis GM. Associations between urinary phthalate concentrations and semen quality parameters in a general population. Hum Reprod. 2015;30:2645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan J, Traore K, Li W, Amri H, Huang H, Wu C, et al. Molecular mechanisms mediating the effect of mono-(2-Ethylhexyl) phthalate on hormone-stimulated steroidogenesis in MA-10 mouse tumor Leydig cells. Endocrinology. 2010;151:3348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gunnarsson D, Leffler P, Ekwurtzel E, Martinsson G, Liu K, Selstam G. Mono-(2-ethylhexyl) phthalate stimulates basal steroidogenesis by a cAMP-independent mechanism in mouse gonadal cells of both sexes. Reproduction. 2008;135:693–703.

    Article  CAS  PubMed  Google Scholar 

  79. Han X, Cui Z, Zhou N, Ma M, Li L, Li Y, et al. Urinary phthalate metabolites and male reproductive function parameters in Chongqing general population, China. Int J Hyg Environ Health. 2014;217:271–8.

    Article  CAS  PubMed  Google Scholar 

  80. Hu Y, Dong C, Chen M, Lu J, Han X, Qiu L, et al. Low-dose monobutyl phthalate stimulates steroidogenesis through steroidogenic acute regulatory protein regulated by SF-1, GATA-4 and C/EBP-beta in mouse Leydig tumor cells. Reprod Biol Endocrinol. 2013;11:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Y, Hu Y, Dong C, Lu H, Zhang C, Hu Q, et al. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB. Delmas D, editor. PLoS One. 2016;11:e0146138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Savchuk I, Söder O, Svechnikov K. Mono-2-Ethylhexyl phthalate stimulates androgen production but suppresses mitochondrial function in mouse Leydig cells with different steroidogenic potential. Toxicol Sci. 2015;145:149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen X, Liu YN, Zhou QH, Leng L, Chang Y, Tang NJ. Effects of low concentrations of Di-(2-ethylhexyl) and mono-(2-ethylhexyl) phthalate on steroidogenesis pathways and apoptosis in the murine Leydig tumor cell line MLTC-1. Biomed Environ Sci. 2013;26:986–9.

    CAS  PubMed  Google Scholar 

  84. Dees JH, Gazouli M, Papadopoulos V. Effect of mono-ethylhexyl phthalate on MA-10 Leydig tumor cells. Reprod Toxicol. 2001;15:171–87.

    Article  CAS  PubMed  Google Scholar 

  85. Fiandanese N, Borromeo V, Berrini A, Fischer B, Schaedlich K, Schmidt J-S, et al. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring. Reprod Toxicol. 2016;65:123–32.

    Article  CAS  PubMed  Google Scholar 

  86. Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116:1092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pant N, Pant A, Shukla M, Mathur N, Gupta Y, Saxena D. Environmental and experimental exposure of phthalate esters: the toxicological consequence on human sperm. Hum Exp Toxicol. 2011;30:507–14.

    Article  CAS  PubMed  Google Scholar 

  88. Desdoits-Lethimonier C, Albert O, Le Bizec B, Perdu E, Zalko D, Courant F, et al. Human testis steroidogenesis is inhibited by phthalates. Hum Reprod. 2012;27:1451–9.

    Article  CAS  PubMed  Google Scholar 

  89. Hauser R, Sokol R. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult male. Fertil Steril. 2008;89:e59–65.

    Article  PubMed  Google Scholar 

  90. Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, et al. Phthalate exposure and human semen parameters. Epidemiology. 2003;14:269–77.

    Article  PubMed  Google Scholar 

  91. Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod. 2007;22:688–95.

    Article  CAS  PubMed  Google Scholar 

  92. Duty SM, Calafat AM, Silva MJ, Brock JW, Ryan L, Chen Z, et al. The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters. J Androl. 2004;25:293–302.

    Article  CAS  PubMed  Google Scholar 

  93. Hauser R, Meeker JD, Duty S, Silva MJ, Calafat AM. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology. 2006;17:682–91.

    Article  PubMed  Google Scholar 

  94. Liu L, Bao H, Liu F, Zhang J, Shen H. Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int. 2012;42:78–83.

    Article  CAS  PubMed  Google Scholar 

  95. Meeker JD, Calafat AM, Hauser R. Urinary metabolites of Di(2-ethylhexyl) phthalate are associated with decreased. J Androl. 2009;30:287–97.

    Article  CAS  PubMed  Google Scholar 

  96. Kay VR, Bloom MS, Foster WG. Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol. 2014;44:467–98.

    Article  CAS  PubMed  Google Scholar 

  97. Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol. 2006;36:459–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol. 2008;42:995–1003.

    Article  CAS  PubMed  Google Scholar 

  99. Steenland K, Zhao L, Winquist A. A cohort incidence study of workers exposed to perfluorooctanoic acid (PFOA). Occup Environ Med. 2015;72:373–80.

    Article  PubMed  Google Scholar 

  100. Biegel LB, Liu RCM, Hurtt ME, Cook JC. Effects of ammonium Perfluorooctanoate on Leydig-cell function: in vitro, in vivo, and ex vivo studies. Toxicol Appl Pharmacol. 1995;134:18–25.

    Article  CAS  PubMed  Google Scholar 

  101. Shi Z, Zhang H, Liu Y, Xu M, Dai J. Alterations in gene expression and testosterone synthesis in the testes of male rats exposed to Perfluorododecanoic acid. Toxicol Sci. 2007;98:206–15.

    Article  CAS  PubMed  Google Scholar 

  102. Wan HT, Zhao YG, Wong MH, Lee KF, Yeung WSB, Giesy JP, et al. Testicular signaling is the potential target of Perfluorooctanesulfonate-mediated subfertility in male Mice1. Biol Reprod. 2011;84:1016–23.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang H, Lu Y, Luo B, Yan S, Guo X, Dai J. Proteomic analysis of mouse testis reveals perfluorooctanoic acid-induced reproductive dysfunction via direct disturbance of testicular steroidogenic machinery. J Proteome Res. 2014;13:3370–85.

    Article  CAS  PubMed  Google Scholar 

  104. Kang JS, Choi JS, Park JW. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. Chemosphere. 2016;155:436–43.

    Article  CAS  PubMed  Google Scholar 

  105. López-Doval S, Salgado R, Pereiro N, Moyano R, Lafuente A. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environ Res. 2014;134:158–68.

    Article  PubMed  CAS  Google Scholar 

  106. Pereiro N, Moyano R, Blanco A, Lafuente A. Regulation of corticosterone secretion is modified by PFOS exposure at different levels of the hypothalamic–pituitary–adrenal axis in adult male rats. Toxicol Lett. 2014;230:252–62.

    Article  CAS  PubMed  Google Scholar 

  107. Qiu L, Zhang X, Zhang X, Zhang Y, Gu J, Chen M, et al. Sertoli cell is a potential target for perfluorooctane sulfonate-induced reproductive dysfunction in male mice. Toxicol Sci. 2013;135:229–40.

    Article  CAS  PubMed  Google Scholar 

  108. Jensen AA, Leffers H. Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl. 2008;31:161–9.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Y, Beesoon S, Zhu L, Martin JW. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ Sci Technol. 2013;47:10,619–27.

    Article  CAS  Google Scholar 

  110. López-Doval S, Salgado R, Lafuente A. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats. Chemosphere. 2016;155:488–97.

    Article  PubMed  CAS  Google Scholar 

  111. Šabović I, Cosci I, De Toni L, Ferramosca A, Stornaiuolo M, Di Nisio A, Dall’Acqua S, Garolla A, Foresta C. Perfluoro-octanoic acid impairs sperm motility through the alteration of plasma membrane. J Endocrinol Investig. 2020;43(5):641–52.

    Article  CAS  Google Scholar 

  112. Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, et al. Temporal trends of Perfluoroalkyl concentrations in American red cross adult blood donors, 2000–2010. Environ Sci Technol. 2012;46:6330–8.

    Article  CAS  PubMed  Google Scholar 

  113. Raymer JH, Michael LC, Studabaker WB, Olsen GW, Sloan CS, Wilcosky T, et al. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and their associations with human semen quality measurements. Reprod Toxicol. 2012;33:419–27.

    Article  CAS  PubMed  Google Scholar 

  114. Kubwabo C, Kosarac I, Lalonde K. Determination of selected perfluorinated compounds and polyfluoroalkyl phosphate surfactants in human milk. Chemosphere. 2013;91:771–7.

    Article  CAS  PubMed  Google Scholar 

  115. Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, et al. Trans-placental transfer of thirteen Perfluorinated compounds and relations with fetal thyroid hormones. Environ Sci Technol. 2011;45:7465–72.

    Article  CAS  PubMed  Google Scholar 

  116. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

    Article  CAS  PubMed  Google Scholar 

  117. Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, et al. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect. 2013;121:453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ingelido AM, Abballe A, Gemma S, Dellatte E, Iacovella N, De Angelis G, et al. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto region, Italy. Environ Int. 2018;110:149–59.

    Article  CAS  PubMed  Google Scholar 

  119. Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebæk NE, Jørgensen N. Do Perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 2009;117:923–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Louis GMB, Chen Z, Schisterman EF, Kim S, Sweeney AM, Sundaram R, et al. Perfluorochemicals and human semen quality: the LIFE study. Environ Health Perspect. 2015;123:57–63.

    Article  PubMed  Google Scholar 

  121. Toft G, Jönsson BAG, Lindh CH, Giwercman A, Spano M, Heederik D, et al. Exposure to perfluorinated compounds and human semen quality in arctic and European populations. Hum Reprod. 2012;27:2532–40.

    Article  CAS  PubMed  Google Scholar 

  122. Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, et al. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances—a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012;33(4):577–83.

    Article  CAS  PubMed  Google Scholar 

  123. Governini L, Guerranti C, De Leo V, Boschi L, Luddi A, Gori M, et al. Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds. Andrologia. 2015;47:1012–9.

    Article  CAS  PubMed  Google Scholar 

  124. La Rocca C, Alessi E, Bergamasco B, Caserta D, Ciardo F, Fanello E, et al. Exposure and effective dose biomarkers for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in infertile subjects: preliminary results of the PREVIENI project. Int J Hyg Environ Health. 2012;215:206–11.

    Article  PubMed  CAS  Google Scholar 

  125. La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, et al. Exposure to endocrine disruptors and nuclear receptors gene expression in infertile and fertile men from Italian areas with different environmental features. Int J Environ Res Public Health. 2015;12:12426–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Foresta C, Tescari S, Di Nisio A. Impact of perfluorochemicals on human health and reproduction: a male’s perspective. J Endocrinol Investig. 2018;41(6):639–45.

    Article  CAS  Google Scholar 

  127. Di Nisio A, Sabovic I, Valente U, Tescari S, Rocca MS, Guidolin D, Dall’Acqua S, Acquasaliente L, Pozzi N, Plebani M, Garolla A, Foresta C. Endocrine disruption of androgenic activity by perfluoroalkyl substances: clinical and experimental evidence. J Clin Endocrinol Metab. 2019;104(4):1259–71.

    Article  PubMed  Google Scholar 

  128. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ferlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferlin, A., Di Nisio, A., De Toni, L., Foresta, C. (2021). Impact of Endocrine Disruptors on Male Sexual Development. In: Foresta, C., Gianfrilli, D. (eds) Pediatric and Adolescent Andrology. Trends in Andrology and Sexual Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80015-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80015-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80014-7

  • Online ISBN: 978-3-030-80015-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics