Skip to main content

Nanoelectronic Systems for Quantum Computing

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nanoelectronic systems have driven the technology advances for the past half century. But, as we move forward in the twenty-first century, new concepts for computing, notably quantum computing, have appeared that promise dramatic increases in computational efficiency. While these are new systems concepts, they likely will continue to be manufactured using the technology of nanoelectronics. Here, we discuss a variety of approaches which are currently being studied for applicability to quantum computing. But, issues such as scalability, which has facilitated the development of nanoelectronic systems so far, pose important questions for these new and novel approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turing, A.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. Ser. II. 42, 230–265 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kilby, J.: Invention of the integrated circuit. IEEE Trans. Electron Devices. 23, 648–654 (1976)

    Article  Google Scholar 

  3. Moore, G.E.: Cramming more components onto integrated circuits. Electronics. 38(8), 114–117 (1965)

    Google Scholar 

  4. Dennard, R.H., Gaensslen, F.H., Yu, H.-N., Rideout, V.L., Bassous, E., Leblanc, A.R.: Design of ion-implanted MOSFET’s with very small dimensions. IEEE Sol. State Circuits. 9, 256–268 (1974)

    Article  Google Scholar 

  5. Evans, C.: The Micro Millennium. Washington Square Press, New York (1979)

    Google Scholar 

  6. https://www.pcgamesn.com/intel-amd-7nm-cpu-euv

  7. https://www.anandtech.com/show/12677/tsmc-kicks-off-volume-production-of-7nm-chips

  8. https://www.anandtech.com/show/11832/tsmc-teams-up-with-arm-and-cadence-to-build-7-nm-chip-in-q1-2018

  9. https://spectrum.ieee.org/nanoclast/semiconductors/devices/globalfoundries-halts-7nm-chip-development

  10. Ferry, D.K.: Nanowires in nanoelectronics. Science. 319, 579 (2008)

    Article  Google Scholar 

  11. Ferry, D.K., Gilbert, M.J., Akis, R.: Some considerations on nanowires in nanoelectronics. IEEE Trans. Electron Device. 55, 2810 (2008)

    Article  Google Scholar 

  12. Fang, W.W., Singh, N., Bera, L.K., Nguyen, H.S., Rustagi, S.C., Lo, G.Q., Balasubramanian, N., Kwong, D.-L.: Vertically stacked SiGe nanowire array channel CMOS transistors. IEEE Electron Device Lett. 28, 211 (2007)

    Article  Google Scholar 

  13. Ernst, T., Duraffourg, L., Dupré, C., Bernard, E., Andreucci, P., Bécu, S., Ollier, E., Hubert, A., Halteé, C., Buckley, J., Thomas, O., Delapierre, G., Deleonibus, S., de Salvo, B., Robert, P., Faynot, O.: Novel Si-based nanowire devices: will they serve ultimate MOSFETs scaling or ultimate hybrid integration. In: Proceedings of IEDM Meeting, San Francisco, 2008, pp. 1–4. IEEE, New York (2008)

    Google Scholar 

  14. Dupré, C., Hubert, A., Bécu, S., Jublot, M., Maffini-Alvaro, V., Vizioz, C., Aussenac, F., Arvet, C., Barnola, S., Hartmann, J.-M., Garnier, G., Allain, F., Colonna, J.-P., Rivoire, M., Guillaumot, B., Ghibaudo, G., Faynot, O., Ernst, T., Deleonibus, S.: 15nm-diameter 3D stacked nanowires with independent gates operation: ΦFET. In: Proceedings of IEDM Meeting, San Francisco, 2008, pp. 749–752. IEEE, New York (2008)

    Google Scholar 

  15. Ng, R.M.Y., Wang, T., Liu, F., Zuo, X., He, J., Chan, M.: Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation. IEEE Electron Device Lett. 30, 520 (2009)

    Article  Google Scholar 

  16. Sacchetto, D., Xie, S., Savu, V., Zervas, M., de Michelli, G., Brugger, J., Leblebici, Y.: Vertically-stacked gate-all-around polysilicon nanowire FETs with sub-μm gates patterned by nanostencil lithography. Microelectron. Eng. 98, 355 (2012)

    Article  Google Scholar 

  17. Moon, D.-I., Choi, S.-J., Duarte, J.P., Choi, Y.-K.: Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate. IEEE Trans. Electron Devices. 60, 1355 (2013)

    Article  Google Scholar 

  18. De Marchi, M., Sacchetto, D., Zhang, J., Frache, S., Gaillardon, P.-E., Leblebici, Y., De Micheli, G.: Top-down fabrication of gate-all-around vertically stacked silicon nanowire FETs with controllable polarity. IEEE Trans. Nanotechnol. 13, 1029 (2014)

    Article  Google Scholar 

  19. Tachi, K., Barraud, S., Kakushima, K., Iwai, H., Cristoloveanu, S., Ernst, T.: Comparison of low-temperature electrical characteristics of gate-all-around FETs, FinFETS and fully-deplete SOI FETS. Microelectron. Reliab. 51, 885 (2011)

    Article  Google Scholar 

  20. Huang, Y.-C., Chiang, M.-H., Fossum, J.G.: GAAFET versus pragmatic FinFET at the 5 nm Si-based CMOS technology node. J. Electron Devices Soc. 5, 164 (2017)

    Article  Google Scholar 

  21. Gaillardon, P.-E., Amaru, L.G., Bobba, S., De Marchi, M., Sacchetto, D., De Michelli, G.: Nanowire systems: technology and design. Philos. Trans. Roy. Soc. A. 372, 20130102 (2018)

    Article  Google Scholar 

  22. Hur, J., Lee, B.-H., Kang, M.-H., Ahn, D.-C., Bang, T., Jeon, S.-B., Choi, Y.-K.: Comprehensive analysis of gate-induced drain leakage in vertically stacked nanowire FETs: inversion-mode versus junctionless mode. IEEE Electron Device Lett. 57, 541 (2016)

    Article  Google Scholar 

  23. Veloso, A., Matagne, P., Simoen, E., Kaczer, B., Eneman, G., Mertens, H., Yakimets, D., Parvais, B., Mocuta, D.: Junctionless versus inversion-mode lateral semiconductor nanowire transistors. J. Phys. Condens. Matter. 30, 384002 (2018)

    Article  Google Scholar 

  24. Park, J., Lee, H., Oh, S., Shin, C.: Design for variation-immunity in sub-10nm stacked-nanowire FETs to suppress LER-induced random variations. IEEE Trans. Electron Devices. 63, 5048 (2016)

    Article  Google Scholar 

  25. Park, J., Shin, C.: Impact of interface traps and surface roughness on the device performance of stacked-nanowire FETs. IEEE Trans. Electron Devices. 64, 4025 (2017)

    Article  Google Scholar 

  26. Badami, O., Lizit, D., Driussi, F., Palestri, P., Esseni, D.: Benchmarking of 3-D MOSFET architectures: focus on the impact of surface roughness and self-heating. IEEE Trans. Electron Devices. 65, 3646 (2018)

    Article  Google Scholar 

  27. Jegadheesan, V., Sivasankaran, K.: Influence of RDF and MGG induced variability on performance of 7 nm multi-gate transistors with metal/high-k gate stack. ECS J. Solid State Sci. Technol. 7, Q171–Q175 (2018)

    Article  Google Scholar 

  28. Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Buillorn, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., Young, A., Chao, R., Kang, M., Liu, Z., Fan, S., Hamieh, B., Sieg, S., Mignot, Y., Xu, W., Seo, S.-C., Yoo, J., Mochizuki, S., Sankarapandian, M., Kwon, O., Carr, A., Greene, A., Park, Y., Frougier, J., Galatage, R., Bao, R., Shearer, J., Conti, R., Song, H., Lee, D., Kong, D., Xu, Y., Arceo, A., Bi, Z., Xu, P., Muthinti, R., Li, J., Wong, R., Brown, D., Oldiges, P., Robison, R., Arnold, J., Felix, N., Skordas, S., Gaudiello, J., Standaert, T., Jagannathan, H., Corliss, D., Na, M.-H., Knorr, A., Wu, T., Gupta, D., Lian, S., Divakaruni, R., Gow, T., Labelle, C., Lee, S., Paruchuri, V., Bu, H., Khare, M.: Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFet. In: Symposium on VLSI Technology Digest, pp. T230–T231. JSAP, New York (2017)

    Google Scholar 

  29. Benioff, P.A.: Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines. Int. J. Theor. Phys. 21, 177–201 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Deutsch, D.: Quantum theory, the Church-Turing principle, and the universal quantum computer. Proc. Roy. Soc. Lond. A. 400, 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond. A. 425, 73–90 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jozsa, R.: Characterizing classes of functions computable by quantum parallelism. Proc. Roy. Soc. Lond. A. 435, 563–574 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. Lond. A. 439, 553–558 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lloyd, S.: A potentially realizable quantum computer. Science. 261, 1569–1571 (1993)

    Article  Google Scholar 

  35. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, New York (1994)

    Chapter  Google Scholar 

  36. Eckert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996)

    Article  MathSciNet  Google Scholar 

  37. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996)

    Google Scholar 

  38. Tang, E.: A quantum-inspired classical algorithm for recommendation systems, arxiv.org/arxiv.1807.04271 (2019)

  39. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lloyd, S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995)

    Article  Google Scholar 

  41. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurt, H.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457–3467 (1995)

    Article  Google Scholar 

  42. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of the 37th Symposium on Foundations of Computer Science, pp. 56–65. IEEE, New York (1996)

    Google Scholar 

  43. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A. 54, 1098–1105 (1996)

    Article  Google Scholar 

  44. Kak, S.: General qubit errors cannot be corrected. Inf. Sci. 152, 195–202 (2003)

    Article  MathSciNet  Google Scholar 

  45. Preskill, J.: Quantum computing: pro and con. Proc. Roy. Soc. Lond. A. 454, 469–486 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dynakonov, M.I.: Revisiting the hopes for scalable quantum computation. JETP Lett. 98, 514–518 (2013)

    Article  Google Scholar 

  48. Gea-Banacloche, J., Kish, L.B.: Comparison of energy requirements for classical and quantum information processing. Fluct. Noise Lett. 3, C3–C7 (2003)

    Article  Google Scholar 

  49. Kalai, G., Kuperberg, G.: Contagious error sources would need time travel to prevent quantum computation. Phys. Rev. A. 92, 022345 (2015)

    Article  Google Scholar 

  50. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., Barends, R., Burkett, E., Chen, Y., Chen, Z., Fowler, A., Foxen, B., Giustina, M., Graff, R., Jeffrey, E., Huang, T., Kelly, J., Klimov, P., Lucero, E., Mutus, J., Neeley, M., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Nevens, H., Martinis, J.M.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science. 360, 195–199 (2018)

    Article  MathSciNet  Google Scholar 

  51. Lüpke, F., Just, S., Eschbach, M., Heider, T., Mlynczak, E., Lanius, M., Schüffelgen, P., Rosenbach, D., von den Driesch, N., Cherepanov, V., Mussier, G., Piucinski, L., Grützmacher, D., Schneier, C.M., Tautz, E.S., Voigtländer, B.: In situ disentangling surface state transport channel of a topological insulator thin film by gating. npj Quantum Mater. 3, 46 (2018)

    Article  Google Scholar 

  52. Kauffman, L.H.: Majorana fermions and representation of the braid group. Int. J. Mod. Phys. A. 33, 1830023 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature. 574, 505–510 (2019)

    Article  Google Scholar 

  54. Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits, arxiv:1710.05867v1 (2017)

    Google Scholar 

  55. Chen, Z.-Y., Zhou, Q., Xue, C., Yang, X., Guo, G.-C., Guo, G.-P.: 64-qubit quantum circuit simulation. Sci. Bull. 63, 964–971 (2018)

    Article  Google Scholar 

  56. Michielsen, K., Nocon, M., Willsch, D., Jin, F., Lippert, T., De Raedt, H.: Benchmarking gate-based quantum computers. Comput. Phys. Commun. 220, 44–55 (2017)

    Article  MathSciNet  Google Scholar 

  57. Dyakonov, M.: The case against quantum computing. IEEE Spectr., published online 15 Nov 2018

    Google Scholar 

  58. Hartree, D.R.: The ENIAC, an electronic calculating machine. Nature. 157, 527 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  59. von Neumann, J.: First Draft of a Report on the EDVAC. Moore School of Engineering (1945). Archived at https://web.archive.org/web/20130314123032/http://qss.stanford.edu/∼godfrey/vonNeumann/vnedvac.pdf

    Book  MATH  Google Scholar 

  60. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwiss. 23, 807–812, 823–828, 844–849 (1935). Trans. Trimmer, J.D.: The present situation in quantum mechanics. Proc. Am. Philos. Soc. 124, 323–338 (1980)

    Article  MATH  Google Scholar 

  61. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature. 393, 133–137 (1998)

    Article  Google Scholar 

  62. O’Brien, J.L., Schofield, S.R., Simmons, M.Y., Clark, R.G., Dzurak, A.S., Curson, N.J., Kane, B.E., McAlpine, N.S., Hawley, M.E., Brown, G.W.: Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B. 64, 161401 (2001)

    Article  Google Scholar 

  63. Lyding, J.W., Albein, G.C., Shen, T.-C., Wang, C., Tucker, J.R.: Nanometer scale patterning and oxidation of silicon surfaces with an ultrahigh vacuum scanning tunneling microscope. J. Vac. Sci. Technol. B. 12, 3735–3740 (1994)

    Article  Google Scholar 

  64. Hersam, M.C., Guisinger, N.P., Lyding, J.W.: Silicon-based molecular nanotechnology. Nanotechnology. 11, 70–76 (2000)

    Article  Google Scholar 

  65. Matsukawa, T., Fukai, T., Suzuki, S., Hara, K., Koh, M., Ohdomari, I.: Development of single-ion implantation – controllability of implanted ion number. Appl. Surf. Sci. 117/118, 677–683 (1997)

    Article  Google Scholar 

  66. Matsukawa, T., Shinada, T., Fukai, T., Ohdomari, I.: Key technologies of a focus ion beam system for single ion implantation. J. Vac. Sci. Technol. B. 16, 2479–2483 (1998)

    Article  Google Scholar 

  67. Jamieson, D.N., Yang, C., Hearne, S.M., Pakes, C.I., Prawer, S., Mitic, M., Gauja, E., Anresen, S.E., Hudson, F.E., Dzurak, A.S., Clark, R.G.: Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions. Appl. Phys. Lett. 86, 202101 (2005)

    Article  Google Scholar 

  68. Loss, D., DiVencenzo, D.: Quantum computation with quantum dots. Phys. Rev. A. 57, 120–126 (1998)

    Article  Google Scholar 

  69. Ferry, D.K.: Transport in Semiconductor Mesoscopic Devices, Chapter 8. IOP Publishing, Bristol (2015)

    Book  Google Scholar 

  70. Khoury, M., Rack, M.J., Gunther, A., Ferry, D.K.: Spectroscopy of a silicon quantum dot. Appl. Phys. Lett. 74, 1576–1578 (1999)

    Article  Google Scholar 

  71. Dempsey, K.J., Ciudad, D., Marrows, C.H.: Single electron spintronics. Philos. Trans. Roy. Soc. A. 369, 3150 (2011)

    Article  Google Scholar 

  72. Witzel, W.M., Montaño, I., Muller, R.P., Carroll, M.S.: Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon. Phys. Rev. B. 92, 081407 (2015)

    Article  Google Scholar 

  73. Mohiyaddin, F.A., Kalra, R., Laucht, A., Rahman, R., Klimeck, G., Morello, A.: Transport of spin qubits with donor chains under realistic experimental conditions. Phys. Rev. B. 94, 045314 (2016)

    Article  Google Scholar 

  74. Song, Y., Das Sarma, S.: Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits. Appl. Phys. Lett. 109, 253113 (2016)

    Article  Google Scholar 

  75. Dehollian, J.P., Muhonen, J.T., Blume-Kohut, R., Rudinger, K.M., Gamble, J.K., Nielsen, E., Laucht, A., Simmons, S., Kalra, R., Dzurak, A.S., Morello, A.: Optimization of a solid-state electron spin qubit using gate tomography. New J. Phys. 18, 103018 (2016)

    Article  Google Scholar 

  76. Sigillito, A.J., Tyryshkin, A.M., Beeman, J.W., Haller, E.E., Itoh, K.M., Lyon, S.A.: Stark tuning of donor electron spin quantum bits in germanium. Phys. Rev. B. 94, 125201 (2016)

    Article  Google Scholar 

  77. Wolfowicz, G., Mortemousque, P.-A., Guichard, R., Simmons, S., Thewalt, M.I.W., Itoh, K.M., Morton, J.J.L.: 29Si nuclear spins as a resource for donor spin qubits in silicon. New J. Phys. 18, 023021 (2016)

    Google Scholar 

  78. Pakkiam, P., Houe, M.G., Koch, M., Simmons, M.Y.: Characterization of a scalable donor-based singlet-triplet qubit architecture in silicon. Nano Lett. 18, 4081–4085 (2018)

    Article  Google Scholar 

  79. Abadillo-Uriel, J.C., Calderón, M.J.: Interface effects on acceptor qubits in silicon and germanium. Nanotechnology. 27, 024003 (2016)

    Article  Google Scholar 

  80. Salfi, J., Tong, M., Rogge, S., Culcer, D.: Quantum computing with acceptor spins in silicon. Nanotechnology. 27, 244001 (2016)

    Article  Google Scholar 

  81. Abadillo-Uriel, J.C., Salfi, J., Hu, X., Rogge, S., Calderón, M.J., Culcer, D.: Entanglement control and magic angles for acceptor qubits in Si. Appl. Phys. Lett. 113, 012102 (2018)

    Article  Google Scholar 

  82. Kim, D., Shi, Z., Simmons, C.B., Ward, D.R., Prance, J.R., Koh, T.S., Gamble, J.K., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksen, M.A.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature. 511, 70 (2014)

    Article  Google Scholar 

  83. Thorgrimsson, B., Kim, D., Yang, Y.-C., Smith, L.W., Simmons, C.B., Ward, D.R., Foote, R.H., Corrigan, J., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Extending the coherence of a quantum dot hybrid qubit. npj Quantum Inf. 3, 32 (2017)

    Article  Google Scholar 

  84. Nichol, J.M., Orona, L.A., Harvey, S.P., Fallahi, S., Gardner, G.C., Manfra, M.J., Yacoby, A.: High-fidelity entangling gate for double-quantum dot spin qubits. npj Quantum Inf. 3, 3 (2017)

    Article  Google Scholar 

  85. Ferdous, R., Kawakami, E., Scarlino, P., Nowak, M.P., Ward, D.R., Savage, D.E., Lagally, M.G., Coppersmith, S.N., Friesen, M., Eriksson, M.A., Vanderypen, L.M.K., Rahman, R.: Valley dependent anisotropic spin splitting in silicon quantum dots. npj Quantum Inf. 4, 26 (2018)

    Article  Google Scholar 

  86. Ferdous, R., Chan, K.W., Veldhorst, M., Hwang, J.C.C., Yang, C.H., Sahasrabudhe, H., Klimeck, G., Morello, A., Dzurak, A.S., Rahman, R.: Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability. Phys. Rev. B. 97, 241401 (2018)

    Article  Google Scholar 

  87. Abadillo-Uriel, J.C., Thorgrimsson, B., Kim, D., Smith, L.W., Simmons, C.B., Ward, D.R., Foote, R.H., Corrigan, J., Savage, D.E., Lagally, M.G., Calderón, M.J., Coppersmith, S.N., Eriksson, M.A., Friesen, M.: Signatures of atomic-scale structure in the energy dispersion and coherence of a Si quantum-dot qubit, arxiv:1805.10398v1, 25 May 2018

    Google Scholar 

  88. Wolfe, M.A., Calderon-Vargas, F.A., Kestner, J.P.: Robust operating point for capcitively coupled singlet-triplet qubits. Phys. Rev. B. 96, 201307 (2017)

    Article  Google Scholar 

  89. Serina, M., Kloeffel, C., Loss, D.: Long-range interaction between charge and spin qubits in quantum dots. Phys. Rev. B. 95, 245422 (2017)

    Article  Google Scholar 

  90. Veldhorst, M., Ruskov, R., Yang, C.H., Hwang, J.C.C., Hudson, F.E., Flatté, M.E., Tahan, C., Itoh, K.M., Morello, A., Dzurak, A.S.: Spin-orbit coupling and operation of multi-valley spin qubits. Phys. Rev. B. 92, 201401 (2015)

    Article  Google Scholar 

  91. Gamble, J.K., Harvey-Collard, P., Jacobson, N.T., Baczewski, A.D., Nielsen, E., Maurer, L., Montaño, I., Rudolph, M., Carroll, M.S., Yang, C.H., Rossi, A., Dzurak, A.S., Muller, R.P.: Valley splitting of single-electron Si MOS quantum dots. Appl. Phys. Lett. 109, 253101 (2016)

    Article  Google Scholar 

  92. Neyens, S.F., Foote, R.H., Thorgrimsson, B., Knapp, T.J., McJunkin, T., Vandersypen, L.M.K., Amin, P., Thomas, N.K., Clarke, J.S., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: The critical role of substrate disorder in valley splitting in Si quantum wells. Appl. Phys. Lett. 112, 243107 (2018)

    Article  Google Scholar 

  93. Rotta, D., De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture. Quantum Inf. Process. 15, 2253–2274 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  94. Kim, D., Ward, D.R., Simmons, C.B., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. npj Quantum Inf. 1, 15004 (2015)

    Article  Google Scholar 

  95. Neumann, R., Schreiber, L.R.: Simulation of micro-magnet stray-field dynamics for spin qubit manipulation. J. Appl. Phys. 117, 193903 (2015)

    Article  Google Scholar 

  96. Malkoc, O., Stano, P., Loss, D.: Optimal geometry of lateral GaAs and Si/SiGe quantum dots for electrical control of spin qubits. Phys. Rev. B. 93, 235413 (2016)

    Article  Google Scholar 

  97. Zajac, D.M., Hazard, T.M., Mi, X., Nielsen, E., Petta, J.R.: Scalable gate architecture for a one-dimensional array of semiconductor spin qubits. Phys. Rev. Appl. 6, 054013 (2016)

    Article  Google Scholar 

  98. Mi, X., Cady, J.V., Zajac, D.M., Stehlik, J., Edge, L.F., Petta, J.R.: Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017)

    Article  Google Scholar 

  99. Benito, M., Mi, X., Taylor, J.M., Petta, J.R., Burkard, G.: Input-output theory for spin-photon coupling in Si double quantum dots. Phys. Rev. B. 96, 235434 (2017)

    Article  Google Scholar 

  100. Landig, A.J., Koski, J.V., Scarlino, P., Mendes, U.C., Blais, A., Reichl, C., Wegscheider, W., Wallraff, A., Ensslin, K., Ihn, T.: Coherent spin-photon coupling using a resonant exchange qubit. Nature. 560, 179–184 (2018)

    Article  Google Scholar 

  101. Oh, S., Choi, S.-I.: Wigner-function approach to a single-electron tunnel junction. Phys. Rev. B. 54, 4440–4443 (1996)

    Article  Google Scholar 

  102. Riedel, E.: Zum Tunneleffeckt bei Supraleitern im Mikrowellenfeld. Z. Naturforsch. 19a, 1634–1635 (1964)

    MATH  Google Scholar 

  103. Hamilton, C.A., Shapiro, S.: Experimental demonstration of the Riedel peak. Phys. Rev. Lett. 26, 426–428 (1971)

    Article  Google Scholar 

  104. Liu, Y.-X., Wei, L.F., Nori, F.: Measuring the quality factor of a microwave cavity using superconducting qubit devices. Phys. Rev. A. 72, 033818 (2005)

    Article  Google Scholar 

  105. Wendin, G.: Scalable solid-state qubits: challenging decoherence and read-out. Philos. Trans. Roy. Soc. Lond. A. 361, 1323–1338 (2003)

    Article  Google Scholar 

  106. Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science. 285, 1036–1039 (1999)

    Article  Google Scholar 

  107. Nakamura, Y., Pashkin, Y.A., Tsai, J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature. 398, 786–788 (1999)

    Article  Google Scholar 

  108. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science. 296, 886–889 (2002)

    Article  Google Scholar 

  109. Steffen, M., DiVincenzo, D.P., Chow, J.M., Theis, T.N., Ketchen, M.B.: Quantum computing: an IBM perspective. IBM J. Res. Dev. 55, 13 (2011)

    Article  Google Scholar 

  110. Bouchiat, V., Vion, D., Joyez, P., Esteve, D., Devoret, M.H.: Quantum coherence with a single Cooper pair. Phys. Scripta T. 76, 165–170 (1998)

    Article  Google Scholar 

  111. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Shuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A. 76, 042319 (2007)

    Article  Google Scholar 

  112. Zhu, M.-Z., Ye, L.: Implementing phase-covariant cloning in circuit quantum electrodynamics. Ann. Phys. 373, 512–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  113. Wang, Y., Zhang, G.-Q., You, W.-L.: Photon blockaded with cross-Kerr nonlinearity in superconducting circuits. Laser Phys. Lett. 15, 105201 (2018)

    Article  Google Scholar 

  114. Ferry, D.K.: Quantum Mechanics, 2nd edn. Institute of Physics Publishing, Bristol (2001) Sec. 4.5

    Book  MATH  Google Scholar 

  115. Joshi, A.: The mesoscopic Josephson junction: a classical-like system. Phys. Lett. A. 270, 249–253 (2000)

    Article  Google Scholar 

  116. Zou, J., Shao, B., Su, W.-Y.: Wave-packet analysis of mesoscopic Josephson junction with dissipation in the Wigner formalism. Phys. Lett. A. 285, 401–406 (2001)

    Article  Google Scholar 

  117. Kim, M.D.: Ultrastrong coupling in a scalable design for circuit QED with superconducting flux qubits. Quantum Inf. Process. 14, 3677–3691 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  118. Orgiazzi, J.-L., Deng, C., Layden, D., Marchildon, R., Kitapli, F., Shen, F., Bal, M., Ong, F.R., Lupascu, A.: Flux qubits in a planar circuit quantum electrodynamics architecture: quantum coherence and control. Phys. Rev. B. 93, 104518 (2016)

    Article  Google Scholar 

  119. Hofheinz, M., Wang, H., Ansmann, M., Blalczak, R.C., Lucero, E., Neetey, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature. 459, 546–549 (2009)

    Article  Google Scholar 

  120. Hutchinson, G.D., Holmes, C.A., Stace, T.M., Milburn, G.J., Barrett, S.D., Hasko, D.G., Williams, D.A.: Model for an irreversible bias current in the superconducting qubit measurement process. Phys. Rev. A. 74, 062302 (2006)

    Article  Google Scholar 

  121. Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J., Neill, C., O’Malley, P., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)

    Article  Google Scholar 

  122. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C., Mutus, J., Fowler, A.G., Campbell, B., Chen, Y., Chiaro, B., Dunsworth, A., Neill, C., O’Malley, P., Roushan, P., Vainsencher, A., Wenner, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature. 508, 500–503 (2014)

    Article  Google Scholar 

  123. Xie, J.-K., Ma, S.-L., Yang, Z.-P., Li, Z., Li, F.-L.: Quantum switch for coupling highly detuned superconducting qubits. Phys. Lett. A. 382, 2626–2631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  124. Shi, J., Chen, S., Zhu, H., Ding, Z., He, J., Yu, L., Zhao, S., Wu, T.: Controllable quantum state transfer via XY-type exchange interaction of flux qubits. Laser Phys. Lett. 15, 105202 (2018)

    Article  Google Scholar 

  125. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with applications to the beam maser. Proc. IEEE. 51, 89–109 (1963)

    Article  Google Scholar 

  126. Yamamoto, Y., Imoto, N., Machida, S.: Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback. Phys. Rev. A. 33, 3243–3261 (1986)

    Article  Google Scholar 

  127. Najarbashi, G., Mirzaei, S.: Comparison of qubit and qutrit like entangled squeezed and coherent states of light. Opt. Commun. 377, 33–40 (2016)

    Article  Google Scholar 

  128. Mcconnell, R., Zhang, H., Hu, J., Cuk, S., Vuletic, V.: Entanglement with negative Wigner function of almost 3000 atoms heralded by one photon. Nature. 519, 439–442 (2015)

    Article  Google Scholar 

  129. Siyouri, F.-Z.: Comparative study of entanglement and Wigner function for multi-qubit GHz-squeezed state. Commun. Theor. Phys. 68, 729–734 (2017)

    Article  MathSciNet  Google Scholar 

  130. Chakrabarti, R., Yogesh, V.: Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation. J. Phys. B. 49, 075502 (2016)

    Article  Google Scholar 

  131. Balamurugan, M., Chakrabarti, R., Jenisha, B.V.: Squeezed Schrödinger kitten states of a qubit-oscillator system: generation and quantum properties in the phase space. Physica A. 473, 428–444 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  132. Chakrabarti, R., Yogesh, V.: Nonclassicality and decoherence of photon-added squeezed coherent Schrödinger kitten states in a Kerr medium. Physica A. 490, 886–903 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  133. Paris, M.G.A.: Generation of mesoscopic quantum superpositions through Kerr-stimulated degenerate downconversion. J. Opt. B. 1, 662–667 (1999)

    Article  Google Scholar 

  134. Mølmer, K.: Non-Gaussian states from continuous-wave Gaussian light sources. Phys. Rev. A. 73, 063804 (2006)

    Article  Google Scholar 

  135. Song, H., Kuntz, K.B., Huntington, E.H.: Limitations on the quantum non-Gaussian characteristic of Schrödinger kitten state generation. New J. Phys. 15, 023042 (2013)

    Article  MathSciNet  Google Scholar 

  136. Barral, D., Balado, D., Liñares, J.: Generation and detection of continuous variable quantum vortex states via compact photonic devices. Photo-Dermatology. 4, 2 (2016)

    Google Scholar 

  137. Norozhny, N.B., Sanchez-Mondragon, I.I., Eberly, J.H.: Coherence versus incoherence: collapse and revival in a simple quantum model. Phys. Rev. A. 23, 236–247 (1981)

    Article  MathSciNet  Google Scholar 

  138. Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes-Cummings model: an example of state preparation by a quantum apparatus. Phys. Rev. Lett. 65, 3385–3388 (1990)

    Article  Google Scholar 

  139. Birrittella, R., Chang, K., Gerry, C.C.: Photon-number parity oscillations in the resonant Jaynes-Cummings model. Opt. Commun. 354, 286–290 (2015)

    Article  Google Scholar 

  140. Hessian, H.A., Mohamed, A.-B.A.: Quasi-probability distribution functions for a single trapped ion interacting with a mixed laser field. Laser Phys. 18, 1217–1223 (2008)

    Article  Google Scholar 

  141. Shore, B.W., Knight, P.L.: The Jaynes-Cummings model. J. Mod. Opt. 40, 1195–1238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  142. Merzbacher, E.: Quantum Mechanics, Chapter 13, 2nd edn. Wiley, New York (1970) Also, Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Sec. 11, vol. III. Addison-Wesley, Reading (1965)

    Google Scholar 

  143. Ashrafi, S.M., Bazrafkan, M.R.: New approach to solving master equations of density operator for the Jaynes-Cummings model with cavity damping. Chin. Phys. 23, 090303 (2014)

    Article  Google Scholar 

  144. de los Santos-Sánchez, O., Récamier, J., Jáuregui, R.: Markovian master equation for nonlinear systems. Phys. Scr. 90, 074018 (2015)

    Article  Google Scholar 

  145. Abdalla, M.S., Khalil, E.M., Obada, A.S.-F., Perina, J., Krepelka, J.: Quantum statistical characteristics of the interaction between two two-level atoms and radiation field. Eur. Phys. J. Plus. 130, 227 (2015)

    Article  Google Scholar 

  146. Ghorbani, M., Faghihi, M.J., Safari, H.: Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes-Cummings model. J. Opt. Soc. Am. B. 34, 1884–1893 (2017)

    Article  Google Scholar 

  147. Pandit, M., Das, S., Roy, S.S., Dhar, H.S., Sen, U.: Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model. J. Phys. B. 51, 045501 (2018)

    Article  Google Scholar 

  148. Faraji, E., Tavassoly, M.K.: Dynamics of physical properties of a single-mode quantized field non-linearly an non-resonantly interacting with two V-type three-level atoms passing consecutively through a cavity. Opt. Commun. 354, 333–343 (2015)

    Article  Google Scholar 

  149. Lv, D., An, S., Um, M., Zhang, J., Zhang, J.-N., Kim, M.S., Kim, K.: Reconstruction of the Jaynes-Cummings field state of ionic motion in a harmonic trap. Phys. Rev. A. 95, 043813 (2017)

    Article  Google Scholar 

  150. Miranowicz, A., Bajer, J., Lambert, N., Liu, Y.-X., Nori, F.: Tunable multiphonon blockade in coupled nanomechanical resonators. Phys. Rev. A. 93, 013808 (2016)

    Article  Google Scholar 

  151. Irish, E.K., Gea-Banacloche, J., Maritn, I., Schwab, K.C.: Dynamics of a two-level system strongly coupled to a high-frequency quantum resonator. Phys. Rev. B. 72, 195410 (2005)

    Article  Google Scholar 

  152. Balamurugan, M., Chakrabarti, R., Virgin Jenisha, B.: Squeezed Schrödinger kitten states of a qubit-oscillator system: generation and quantum properties in the phase space. Physica A. 473, 428–444 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  153. Zayed, E.M.E., Daoud, A.S., Al-Laithy, M.A., Naseem, E.N.: The Wigner distribution function for squeezed vacuum superposed state. Chaos Solitons Fractals. 24, 967–975 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  154. Susher, R.E., Holberg, L.W., Yorke, B., Mertz, J.C., Valley, J.F.: Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985)

    Article  Google Scholar 

  155. Wu, L.-A., Kimble, H.J., Hall, J.L., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986)

    Article  Google Scholar 

  156. Ashhab, S., Nori, F.: Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A. 81, 042311 (2010)

    Article  Google Scholar 

  157. Shen, L.-T., Yang, Z.-B., Wu, H.-Z., Zheng, S.-B.: Ground state of an ultrastrongly coupled qubit-oscillator system with broken inversion symmetry. Phys. Rev. A. 93, 063837 (2016)

    Article  Google Scholar 

  158. Girvin, S.M.: Schrödinger Cat States in Circuit QED. Lectures Presented at the les Houches Summer School – Trends in Atomic Physics. Oxford University Press, Oxford (2017)

    Google Scholar 

  159. Xu, S., Xu, X.-X., Liu, C.-J., Zhang, H.-L., Hu, L.-Y.: Hermite polynomial excited squeezed vacuum state: generation of nonclassical properties. Optik. 144, 664–671 (2017)

    Article  Google Scholar 

  160. Gómez-Ruiz, F.J., Acevedo, O.L., Rogriguez, F.J., Quiroga, L., Johnson, N.F.: Pulsed generation of quantum coherences and non-classicality in light-matter systems. Front. Phys. 6, 92 (2018)

    Article  Google Scholar 

  161. Xia, B.-Y., Cao, C., Han, Y.-H., Zhang, R.: Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside single-sided optical microcavities. Laser Phys. 28, 095201 (2018)

    Article  Google Scholar 

  162. Alqahtani, M.M.: Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf. Process. 17, 211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  163. Liu, T., Guo, B.-Q., Zhang, Y., Yu, C.-S., Zhang, W.-N.: One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED system. Quantum Info. Process. 17, 240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  164. Silverstone, J.W., Santagati, R., Bonneau, D., Strain, M.J., Sorel, M., O’Brien, J.L., Thompson, M.G.: Nat. Commun. 6, 7948 (2015)

    Article  Google Scholar 

  165. Schaeff, C., Polster, R., Lapkiewicz, R., Fickler, R., Ramelow, S., Zeilinger, A.: Scalable fiber integrated source for higher dimensional path-entangled photonic quNits. Opt. Express. 20, 16145–16153 (2012)

    Article  Google Scholar 

  166. Wang, J., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Bacco, D., Bonneau, D., Silverstone, J.W., Gong, Q., Acín, A., Rottwitt, K., Oxenløwe, L.K., O’Brien, J.L., Laing, A., Thompson, M.G.: Multidimensional quantum entanglement with large-scale integrated optics. Science. 360, 285–291 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  167. Wang, X., Ma, C., Kumar, R., Douissiere, P., Jones, R., Rong, H., Mookherjea, S.: Photon pair generation using a silicon photonic hybrid laser. APL Photon. 3, 106104 (2018)

    Article  Google Scholar 

  168. Santagati, R., Silverstone, J.W., Strain, M.J., Sorel, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. 19, 114006 (2017)

    Article  Google Scholar 

  169. Faruque, I.I., Sinclair, G.F., Bonneau, D., Rarity, J.G., Thompson, M.G.: On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. Opt. Express. 26, 20379–20395 (2018)

    Article  Google Scholar 

  170. Kues, M., Reimer, C., Roztocki, P., Cortés, L.R., Sciara, S., Wetzel, B., Zhang, Y., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Azaña, J., Morandotti, R.: On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature. 546, 622–629 (2017)

    Article  Google Scholar 

  171. Schmidgall, E.R., Chakravarthi, S., Gould, M., Christen, I.R., Hestroffer, K., Hatami, F., Fu, K.-M.C.: Frequency control of single quantum emitters in integrated photonic circuits. Nano Lett. 18, 1175–1179 (2018)

    Article  Google Scholar 

  172. Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nature Photon. 10, 631–641 (2016)

    Article  Google Scholar 

  173. Bunandar, D., Lentine, A., Lee, C., Cai, H., Long, C.M., Boynton, N., Martinez, N., DeRose, C., Chen, C., Grein, M., Trotter, D., Starbuck, A., Pomerene, A., Hamilton, S., Wong, F.N.C., Camacho, R., Davids, P., Urayama, J., Englund, D.: Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X. 8, 021009 (2018)

    Google Scholar 

  174. Reimer, C., Zhang, Y., Roztocki, P., Sciara, S., Cortés, L.R., Islam, M., Fischer, B., Wetzel, B., Cino, A.C., Chu, S.T., Little, B., Moss, D., Caspani, L., Azaña, J., Kues, M., Morandotti, R.: On-chip frequency combs and telecommunications signal processing meet quantum optics. Front. Optoelectron. 11, 134–147 (2018)

    Article  Google Scholar 

  175. Pérezm, D., Gasulla, I., Crudgington, L., Thompson, D.J., Khokhar, A.Z., Li, K., Cao, W., Mashanovich, G.Z., Capmany, J.: Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017)

    Article  Google Scholar 

  176. Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017)

    Article  Google Scholar 

  177. Jelezko, F., Wrachtrup, D.: Single defect centers in diamond: a review. Phys. Status Solidi A. 203, 3207–3225 (2006)

    Article  Google Scholar 

  178. Schirhagl, R., Chang, K., Loretz, M., Degen, C.L.: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)

    Article  Google Scholar 

  179. Vimolchalao, S., Liang, W.H., Vila, F.D., Kas, J.J., Farges, F., Rehr, J.J.: Bethe-Salpeter equation calculations of nitrogen-vacancy defects in diamond. J. Phys. Chem. Solids. 123, 87–93 (2018)

    Article  Google Scholar 

  180. Fluegel, B., Beaton, D., Hanna, M., Mascarenhas, A.: Crystallographically aligned 1.508 eV nitrogen pairs in ultra-dilute GaAs:N. Jpn. J. Appl. Phys. 57, 090302 (2018)

    Article  Google Scholar 

  181. Udvarhelyi, P., Gali, A.: Ab initio spin-strain coupling parameters of divancy qubits in silicon carbide. Phys. Rev. Appl. 10, 054010 (2018)

    Article  Google Scholar 

  182. Cheng, G.D., Wan, Y.P., Yan, S.Y.: Optical and spin coherence properties of NV center in diamond and 3C-SiC. Comput. Mater. Sci. 154, 60–64 (2018)

    Article  Google Scholar 

  183. Zargaleh, S.A., Hameau, S., Eble, B., Margaillan, F., von Bardeleben, H.J., Cantin, J.L., Gao, W.: Nitrogen vacancy center in cubit silicon carbide: a promising qubit in the 1.5 μm spectral range for photonic quantum networks. Phys. Rev. B. 98, 165203 (2018)

    Article  Google Scholar 

  184. Gómez, A.V., Rodríguez, F.J., Quiroga, L.: Cross-entangling electronic and nuclear spins of distant nitrogen-vacancy centers in noisy environments by means of quantum microwave radiation. Phys. Rev. B. 98, 075114 (2018)

    Article  Google Scholar 

  185. Udvarhelyi, P., Shkolnikov, V.O., Gali, A., Burkard, G., Pályi, A.: Spin-strain interaction in nitrogen-vacancy centers in diamond. Phys. Rev. B. 98, 075201 (2018)

    Article  Google Scholar 

  186. Doherty, M.W., Mason, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–43 (2013)

    Article  Google Scholar 

  187. Liu, G.-Q., Pan, X.-Y.: Quantum information processing with nitrogen-vacancy centers in diamond. Chinese Phys. B. 27, 020394 (2018)

    Google Scholar 

  188. Chen, Y., Guo, H., Li, W., Wu, D.W., Zhu, Q., Zhao, B., Wang, L., Zhang, Y., Zhao, R., Liu, W., Du, F., Tang, J., Liu, J.: Large-area tridimensional uniform microwave antenna for quantum sensing based on nitrogen-vacancy centers in diamond. Appl. Phys. Express. 11, 123001 (2018)

    Article  Google Scholar 

  189. Hopper, D.A., Shulevitz, H.J., Bassett, L.C.: Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines. 9, 437 (2018)

    Article  Google Scholar 

  190. von Bardeleben, H.J., Cantin, J.L., Rauls, E., Gerstmann, U.: Identification and magneto –optical properties of the NV center in 4H-SiC. Phys. Rev. B. 92, 064104 (2015)

    Article  Google Scholar 

  191. von Bardeleben, H.J., Cantin, J.L., Csóre, A., Gali, A., Rauls, E., Gerstmann, U.: NV centers in 3C,4H, and 6H silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys. Rev. B. 94, 121202 (2016)

    Article  Google Scholar 

  192. Li, X.-X., Li, P.-B., Ma, S.-L., Li, F.-L.: Preparing entangled state between two NV centers via the damping of nanomechanical resonators. Sci. Rep. 7, 14116 (2017)

    Article  Google Scholar 

  193. Raza, F., Ahmed, I., Zhang, D., Imran, A., Khan, A., Lau, C., Zhang, Y.: Buching and antibunching in four wave mixing NV center in diamond. AIP Adv. 8, 105320 (2018)

    Article  Google Scholar 

  194. Pfender, M., Aslam, N., Simon, P., Antonov, D., Thiering, G., Burk, S., Fávaro de Oliveira, F., Denisenko, A., Fedder, H., Meijer, J., Garrido, J.A., Gali, A., Teraji, T., Isoya, J., Doherty, M.W., Alkauskas, A., Gallo, A., Grüneis, A., Neumann, P., Wrachtrup, J.: Protecting a diamond quantum memory by charge state control. Nano Lett. 17, 5931–5937 (2017)

    Article  Google Scholar 

  195. Chen, M., Sun, W.K.C., Saha, K., Jaskula, J.-C., Cappellaro, P.: Protecting sollis-state spins from a strongly coupled environment. New J. Phys. 20, 063011 (2018)

    Article  Google Scholar 

  196. Ball, J.R., Yamashiro, Y., Sumiya, H., Onoda, S., Ohshima, T., Isoya, J., Konstantinov, D., Kubo, Y.: Loop-gap microwave resonator for hybrid quantum systems. Appl. Phys. Lett. 112, 204102 (2018)

    Article  Google Scholar 

  197. Hu, Y., Song, Y., Duan, L.: Quantum interface between a transmon qubit and spins of nitrogen-vacancy centers. Phys. Rev. A. 96, 062301 (2017)

    Article  Google Scholar 

  198. Lai, Y.-Y., Lin, G.-D., Twamley, J., Goan, H.-S.: Single-nitrogen-vacancy quantum memory for a superconducting flux qubit mediated by a ferromagnet. Phys. Rev. A. 97, 052303 (2018)

    Article  Google Scholar 

  199. Nagata, K., Kuramitani, K., Sekiguchi, Y., Kosaka, H.: Universal holonomic quantum gates over geometric spin qubits with polarized microwaves. Nature Commun. 9, 3227 (2018)

    Article  Google Scholar 

  200. Cao, P., Betzholz, R., Cai, J.: Scalable nuclear-spin entanglement mediated by a mechanical oscillator. Phys. Rev. B. 98, 165404 (2018)

    Article  Google Scholar 

  201. Unden, T., Tomek, N., Weggler, T., Frank, F., London, P., Zopes, J., Degen, C., Raatz, N., Meijer, J., Watanabe, H., Itoh, K.M., Plenio, M.B., Naydenov, B., Jelezko, F.: Coherent control of solid state nuclear spin nano-ensembles. njp Quantum Inf. 4, 39 (2018)

    Article  Google Scholar 

  202. Li, P.-B., Nori, F.: Hybrid quantum system with nitrogen-vacancy centers in diamond coupled to surface--phonon polaritons in piezomagnetic superlattices. Phys. Rev. Appl. 10, 024011 (2018)

    Article  Google Scholar 

  203. Adams, C.C.: The Knot Book: An Introduction to the Mathematical Theory of Knots. W. H. Freeman, New York (1994)

    MATH  Google Scholar 

  204. Yang, C.N.: S-matrix for 1-dimensional N-body problem with repulsive or attractive delta-function interaction. Phys. Rev. 168, 1920–1923 (1968)

    Article  Google Scholar 

  205. Baxter, R.J.: Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26, 832–833 (1971)

    Article  Google Scholar 

  206. Kauffman, L.H., Lomonaco Jr., S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  Google Scholar 

  207. Simon, S.H., Bonesteel, N.E., Freedman, M.H., Petrovic, N., Hormozi, L.: Topological quantum computing with only one mobile particle. Phys. Rev. Lett. 96, 070503 (2006)

    Article  MathSciNet  Google Scholar 

  208. Ho, C.-L., Solomon, A.I., Oh, C.-H.: Quantum entanglement, unitary braid representation and Temperley-Lieb algebra. Europhys. Lett. 92, 30002 (2010)

    Article  Google Scholar 

  209. Barkeshli, M., Jian, C.-M., Qi, X.-L.: Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B. 87, 045130 (2013)

    Article  Google Scholar 

  210. McDonald, R.B., Katzgraber, H.G.: Generic braid optimization: a heuristic approach to compute quasi-particle braids. Phys. Rev. B. 87, 054414 (2013)

    Article  Google Scholar 

  211. Ben-Zvi, D., Brochier, A., Jordan, D.: Quantum character varieties and braided module categories. Sel. Math. 24, 4711–4748 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  212. Rowell, E.C., Wang, Z.: Mathematics of topological quantum computing. Bull. Am. Math. Soc. 55, 183–238 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  213. Nayak, C., Wilczek, F.: 2n-quasihole states realize 2n-1-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B. 479, 529–553 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  214. Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics. Phys. Rev. B. 72, 075342 (2005)

    Article  Google Scholar 

  215. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures, 2nd edn, pp. 240–243. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  216. Bonderson, P., Kitaev, A., Shtengel, K.: Detecting non-Abelian statistics in the ν=2/5 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006)

    Article  Google Scholar 

  217. Stern, A., Halperin, B.L.: Proposed experiments to probe the non-Abelian ν=2/5 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006)

    Article  Google Scholar 

  218. Bonderson, P., Freedman, M., Nayak, C.: Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  219. Prodan, E., Haldane, F.D.M.: Mapping the braiding properties of the Moore-Read state. Phys. Rev. B. 80, 115121 (2009)

    Article  Google Scholar 

  220. Hormozi, L., Bonesteel, N.E., Simon, S.H.: Topological quantum computing with Read-Rezayl states. Phys. Rev. Lett. 103, 160501 (2009)

    Article  MathSciNet  Google Scholar 

  221. Cesare, C., Landahl, A.J., Bacon, D., Flammia, S.T., Neels, A.: Adiabatic topological quantum computing. Phys. Rev. A. 92, 1012336 (2015)

    Article  Google Scholar 

  222. Howard, M., Vala, J.: Nonlocality as a benchmark for universal quantum computation in Ising anyon topological quantum computers. Phys. Rev. A. 85, 022304 (2012)

    Article  Google Scholar 

  223. Nielsen, A.E.B.: Anyon braiding in semianalytical fractional quantum Hall lattice models. Phys. Rev. B. 91, 041106 (2015)

    Article  Google Scholar 

  224. Song, C., Xu, D., Zhang, P., Wang, J., Guo, Q., Liu, W., Xu, K., Deng, H., Huang, K., Zheng, D., Zheng, S.-B., Wang, H., Zhu, X., Lu, C.-Y., Pan, J.-W.: Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit. Phys. Rev. Lett. 121, 030502 (2018)

    Article  Google Scholar 

  225. Clarke, D.J., Alicea, J., Shtengel, K.: Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nature Commun. 4, 1348 (2013)

    Article  Google Scholar 

  226. Majorana, E.: Teoria simmetrica dell’elettrone e del postrone. Il Nuovo Cim. 14, 171 (1937)

    Article  MATH  Google Scholar 

  227. Fu, I., Kane, C.L.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)

    Article  Google Scholar 

  228. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhouven, L.P.: Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices. Science. 336, 1003–1007 (2012)

    Article  Google Scholar 

  229. Frolow, S.M., Plissard, S.R., Nadj-Perge, S., Kouwenhoven, L.P., Bakkers, E.P.A.M.: Quantum computing based on semiconductor nanowires. MRS Bull. 38, 809–815 (2013)

    Article  Google Scholar 

  230. Assen, D., Hell, M., Mishmash, R.V., Higginbotham, A., Danon, J., Leijnse, M., Jespersoen, T.S., Folk, J.A., Marcus, C.M., Flensberg, K., Alicea, J.: Milestones toward Majorana-based quantum computing. Phys. Rev. X. 6, 031016 (2016)

    Google Scholar 

  231. Schmidt, T.L., Nunnenkamp, A., Bruder, C.: Majorana qubit rotations in microwave cavities. Phys. Rev. Lett. 110, 107006 (2013)

    Article  Google Scholar 

  232. Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)

    Article  Google Scholar 

  233. Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L., Zhang, S.-C.: Topological computation based on chiral Majorana fermions. Proc. Natl. Acad. Sci. 115, 10938–10942 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  234. Fadaly, E.M.T., Zhang, H., Conesa-Boj, S., Car, D., Giil, Ö., Plissard, S.R., Op det Veld, R.L.M., Kölling, S., Kouwenhoven, L.P., Bakkers, E.P.A.M.: Observation of conductance quantization in InSb nanowire networks. Nano Lett. 17, 8511–8515 (2017)

    Article  Google Scholar 

  235. Zhang, H., Liu, C.-X., Gazibegovic, S., Xu, D., Logan, J.A., Wang, G., van Loo, N., Bommer, J.D.S., de Moor, M.W.A., Car, D., Op het Veld, R.L.M., van Veldhoven, P.J., Koelling, S., Verheijen, M.A., Pendharkar, M., Pennachio, D.J., Shojaei, B., Lee, J.S., Palmstrøm, C.J., Bakkers, E.P.A., Sarma, S.D., Kouwenhoven, L.P.: Quantized Majorana conductance. Nature. 556, 74–79 (2018)

    Article  Google Scholar 

  236. Li, C.-Z., Li, C., Wang, L.-X., Wang, S., Liao, Z.-M., Brinkman, A., Yu, D.P.: Bulk and surface states carried supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions. Phys. Rev. B. 97, 115446 (2018)

    Article  Google Scholar 

  237. Livadaru, L., Xue, P., Shaterzadeh-Yazdi, Z., DiLabio, G.A., Mutus, J., Pitters, J.L., Sanders, B.C., Wolkow, R.A.: Dangling-bond charge qubit on a silicon surface. New J. Phys. 12, 083018 (2010)

    Article  Google Scholar 

  238. Shaterzadeh-Yazdi, Z., Livadaru, L., Taucer, M., Mutus, J., Pitters, J., Wolkow, R.A., Sanders, B.C.: Characterizing the rate and coherence of single-electron tunneling between two dangling bonds on the surface of silicon. Phys. Rev. B. 89, 035315 (2014)

    Article  Google Scholar 

  239. Bohloul, S., Shi, Q., Wolkow, R.A., Guo, H.: Quantum transport in gated dangling-bond atomic wires. Nano Lett. 17, 322–327 (2017)

    Article  Google Scholar 

  240. Rashidi, M., Lloyd, E., Huff, T.R., Achal, R., Taucer, M., Croshaw, J.J., Wolkow, R.A.: Resolving and tuning carrier capture rates at a single silicon atom gap state. ACS Nano. 11, 11732–11738 (2017)

    Article  Google Scholar 

  241. Rashidi, M., Vine, W., Dienel, T., Livadaru, L., Retallick, J., Huff, T., Walus, K., Wolkow, R.A.: Initiating and monitoring the evolution of single electrons within atom-defined structures. Phys. Rev. Lett. 121, 166801 (2018)

    Article  Google Scholar 

  242. Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C., Reggiani, L.: Quantum logic gates based on coherent electron transport in quantum wires. Phys. Rev. Lett. 84, 5912–5915 (2000)

    Article  MATH  Google Scholar 

  243. Yamamoto, M., Takada, S., Bäuerle, C., Watanabe, K., Wieck, A.D., Tarucha, S.: Electrical control of a flying-state qubit. Nat. Nanotechnol. 7, 247–251 (2012)

    Article  Google Scholar 

  244. Eugster, C.C., del Alamo, J.A.: Tunneling spectroscopy of an electron waveguide. Phys. Rev. Lett. 67, 3586–3589 (1991)

    Article  Google Scholar 

  245. Takagaki, Y., Ferry, D.K.: Tunneling spectroscopy of a quantum resonator. J. Appl. Phys. 72, 5001–5003 (1992)

    Article  Google Scholar 

  246. Pivin Jr., D.P., Bird, J.P., Akis, R., Ferry, D.K., Aoyagi, Y., Sugano, T.: The effect of mode coupling on conductance fluctuations in ballistic quantum dots. Semicond. Sci. Technol. 13, A11–A14 (1998)

    Article  Google Scholar 

  247. Ramamoorthy, A., Bird, J.P., Reno, J.L.: Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme. J. Phys. Condense. Matter. 19, 276205 (2007)

    Article  Google Scholar 

  248. Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C., Reggiani, L.: Numerical simulation of quantum logic gates based upon quantum wires. VLSI Des. 13, 97–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  249. Bordone, P., Bertoni, A., Jacoboni, C.: Simulation of entanglement dynamics for scattering between a free and a bound carrier in a quantum wire. J. Comput. Electron. 3, 407–410 (2004)

    Article  Google Scholar 

  250. Bertoni, A.: Perspectives on solid-state flying qubits. J. Comput. Electron. 6, 67–72 (2007)

    Article  Google Scholar 

  251. Bordone, P., Bellentani, L., Bertoni, A.: Quantum computing with quantum-Hall edge state interferometry. Semicond. Sci. Technol. 34, 103001 (2019)

    Article  Google Scholar 

  252. Bertoni, A.: Charge-Based Flying Qubits. In: Meyers R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_67

  253. Chklovskii, D.B., Shklovskii, B.I., Glazmon, L.I.: Electrostatics of edge channels. Phys. Rev. B. 46, 4026–4034 (1992)

    Article  Google Scholar 

  254. Chklovskii, D.B., Matveev, K.A., Shklovskii, B.I.: Ballistic conductance of interacting electrons in the quantum Hall regime. Phys. Rev. B. 47, 12605–12617 (1993)

    Article  Google Scholar 

  255. Aoki, Y., da Cunha, C.R., Akis, R., Ferry, D.K., Ochiai, Y.: Imaging of quantum Hall edge state in a quantum point contact via scanning gate microscopy. Phys. Rev. B. 72, 155327 (2005)

    Article  Google Scholar 

  256. Ferry, D.K., Goodnick, S.M., Bird, J.P.: Transport in Nanostructures, Sec. 4.3, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Ferry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferry, D.K. (2023). Nanoelectronic Systems for Quantum Computing. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics