Skip to main content

Photodetectors Based on Emerging Materials

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Abstract

Photodetectors that convert light into electrical signals have become an indispensable element for a large number of technologies to enable extensive applications, ranging from optical communications to advanced imaging and motion detection, to automotive industry particularly including self-driving cars, and to astronomy and space exploration under harsh environment. The present photodetector market is predominated by silicon (CMOS-based) photodetectors. With the continuous growth of application areas, highly desired are photodetectors of higher performance in terms of speed, efficiency, detectable wavelength range, and integrability with semiconductor technology. These necessitate the development of new photodetectors based on special materials, rather than the conventional silicon single crystals, as building blocks for various advanced photodetection platforms. To this end, we summarize in this chapter the recent status of advanced photodetectors based on the emerging material, graphene. Our discussion includes the performance metrics, working mechanisms, practical implementation, as well as opportunities and challenges, for graphene-based photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koppens, F.H., Mueller, T., Avouris, P., Ferrari, A.C., Vitiello, M.S., Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014)

    Article  Google Scholar 

  2. Hochberg, M., Baehr-Jones, T.: Towards fabless silicon photonics. Nat. Photonics. 4, 492–494 (2010)

    Article  Google Scholar 

  3. de Arquer, F.P.G., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mat. 2, 16100 (2017)

    Article  Google Scholar 

  4. Konstantatos, G.: Current status and technological Prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018)

    Article  Google Scholar 

  5. Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2006)

    Article  Google Scholar 

  6. Wang, G., Zhang, Y., You, C., Liu, B., Yang, Y., Li, H., Cui, A., Liu, D., Yan, H.: Two dimensional materials based photodetectors. Infrared Phys. Technol. 88, 149–173 (2018)

    Article  Google Scholar 

  7. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science. 320, 1308 (2008)

    Article  Google Scholar 

  8. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)

    Article  Google Scholar 

  9. Mueller, T., Xia, F., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics. 4, 297–301 (2010)

    Article  Google Scholar 

  10. Wang, X., Gan, X.: Graphene integrated photodetectors and opto-electronic devices – a review. Chinese Phys. B. 26, 034201 (2017)

    Google Scholar 

  11. Wang, J., Han, J., Chen, X., Wang, X.: Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat. 1, 33–53 (2019)

    Article  Google Scholar 

  12. Shin, D.H., Choi, S.H.: Graphene-based semiconductor Heterostructures for photodetectors. Micromachines (Basel). 9, 350 (2018)

    Article  Google Scholar 

  13. Peters, E.C., Lee, E.J.H., Burghard, M., Kern, K.: Gate dependent photocurrents at a graphene P-N junction. Appl. Phys. Lett. 97 (2010)

    Google Scholar 

  14. Mueller, T., Xia, F., Freitag, M., Tsang, J., Avouris, P.: Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B. 79, 245430 (2009)

    Article  Google Scholar 

  15. Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., Avouris, P.: Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009)

    Article  Google Scholar 

  16. Lemme, M.C., Koppens, F.H., Falk, A.L., Rudner, M.S., Park, H., Levitov, L.S., Marcus, C.M.: Gate-activated Photoresponse in a graphene P-N junction. Nano Lett. 11, 4134–4137 (2011)

    Article  Google Scholar 

  17. Freitag, M., Low, T., Xia, F.N., Avouris, P.: Photoconductivity of biased graphene. Nat. Photonics. 7, 53–59 (2013)

    Article  Google Scholar 

  18. Brida, D., Tomadin, A., Manzoni, C., Kim, Y.J., Lombardo, A., Milana, S., Nair, R.R., Novoselov, K.S., Ferrari, A.C., Cerullo, G., Polini, M.: Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013)

    Article  Google Scholar 

  19. Malic, E., Winzer, T., Bobkin, E., Knorr, A.: Microscopic theory of absorption and ultrafast many-particle kinetics in graphene. Phys. Rev. B. 84 (2011)

    Google Scholar 

  20. Winzer, T., Knorr, A., Malic, E.: Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010)

    Article  Google Scholar 

  21. Tielrooij, K.J., Song, J.C.W., Jensen, S.A., Centeno, A., Pesquera, A., Zurutuza Elorza, A., Bonn, M., Levitov, L.S., Koppens, F.H.L.: Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248 (2013)

    Article  Google Scholar 

  22. Gierz, I., Petersen, J.C., Mitrano, M., Cacho, C., Turcu, I.C., Springate, E., Stohr, A., Kohler, A., Starke, U., Cavalleri, A.: Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013)

    Article  Google Scholar 

  23. Johannsen, J.C., Ulstrup, S., Cilento, F., Crepaldi, A., Zacchigna, M., Cacho, C., Turcu, I.C., Springate, E., Fromm, F., Raidel, C., Seyller, T., Parmigiani, F., Grioni, M., Hofmann, P.: Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013)

    Article  Google Scholar 

  24. Bistritzer, R., MacDonald, A.H.: Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009)

    Article  Google Scholar 

  25. Tse, W.-K., Das Sarma, S.: Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B. 79 (2009)

    Google Scholar 

  26. Gabor, N.M., Song, J.C., Ma, Q., Nair, N.L., Taychatanapat, T., Watanabe, K., Taniguchi, T., Levitov, L.S., Jarillo-Herrero, P.: Hot carrier-assisted intrinsic Photoresponse in graphene. Science. 334, 648–652 (2011)

    Article  Google Scholar 

  27. Freitag, M., Low, T., Avouris, P.: Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013)

    Article  Google Scholar 

  28. Dyakonov, M., Shur, M.: Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993)

    Article  Google Scholar 

  29. Dyakonov, M., Shur, M.: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electr. Devices. 43(380), 380–387 (1996)

    Article  Google Scholar 

  30. Tomadin, A., Polini, M.: Theory of the plasma-wave Photoresponse of a gated graphene sheet. Phys. Rev. B. 88 (2013)

    Google Scholar 

  31. Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012)

    Article  Google Scholar 

  32. Spirito, D., Coquillat, D., De Bonis, S.L., Lombardo, A., Bruna, M., Ferrari, A.C., Pellegrini, V., Tredicucci, A., Knap, W., Vitiello, M.S.: High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 104, 061111 (2014)

    Article  Google Scholar 

  33. Park, J., Ahn, Y.H., Ruiz-Vargas, C.: Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009)

    Article  Google Scholar 

  34. Lee, E.J., Balasubramanian, K., Weitz, R.T., Burghard, M., Kern, K.: Contact and edge effects in graphene devices. Nat. Nanotechnol. 3, 486–490 (2008)

    Article  Google Scholar 

  35. Xia, F., Mueller, T., Golizadeh-Mojarad, R., Freitag, M., Lin, Y.M., Tsang, J., Perebeinos, V., Avouris, P.: Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009)

    Article  Google Scholar 

  36. Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)

    Article  Google Scholar 

  37. Huard, B., Stander, N., Sulpizio, J.A., Goldhaber-Gordon, D.: Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B. 78 (2008)

    Google Scholar 

  38. Urich, A., Pospischil, A., Furchi, M.M., Dietze, D., Unterrainer, K., Mueller, T.: Silver Nanoisland enhanced Raman interaction in graphene. Appl. Phys. Lett. 101, 153113 (2012)

    Article  Google Scholar 

  39. Xu, X., Gabor, N.M., Alden, J.S., van der Zande, A.M., McEuen, P.L.: Photo-thermoelectric effect at a graphene Interface junction. Nano Lett. 10, 562–566 (2010)

    Article  Google Scholar 

  40. Yan, J., Kim, M.H., Elle, J.A., Sushkov, A.B., Jenkins, G.S., Milchberg, H.M., Fuhrer, M.S., Drew, H.D.: Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012)

    Article  Google Scholar 

  41. Tan, Y.W., Zhang, Y., Stormer, H.L., Kim, P.: Temperature dependent electron transport in graphene. Eur. Phys. J. Spec. Topics. 148(15), 15–18 (2007)

    Article  Google Scholar 

  42. Han, Q., Gao, T., Zhang, R., Chen, Y., Chen, J., Liu, G., Zhang, Y., Liu, Z., Wu, X., Yu, D.: Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013)

    Article  Google Scholar 

  43. El Fatimy, A., Myers-Ward, R.L., Boyd, A.K., Daniels, K.M., Gaskill, D.K., Barbara, P.: Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335–338 (2016)

    Article  Google Scholar 

  44. Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008)

    Article  Google Scholar 

  45. Xia, F., Farmer, D.B., Lin, Y.M., Avouris, P.: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010)

    Article  Google Scholar 

  46. Vora, H., Kumaravadivel, P., Nielsen, B., Du, X.: Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012)

    Article  Google Scholar 

  47. Freitag, M., Low, T., Zhu, W., Yan, H., Xia, F., Avouris, P.: Photocurrent in graphene harnessed by tunable intrinsic Plasmons. Nat. Commun. 4, 1951 (2013)

    Article  Google Scholar 

  48. Fang, Z., Wang, Y., Liu, Z., Schlather, A., Ajayan, P.M., Koppens, F.H., Nordlander, P., Halas, N.J.: Plasmon-induced doping of graphene. ACS Nano. 6, 10222–10228 (2012)

    Article  Google Scholar 

  49. Echtermeyer, T.J., Britnell, L., Jasnos, P.K., Lombardo, A., Gorbachev, R.V., Grigorenko, A.N., Geim, A.K., Ferrari, A.C., Novoselov, K.S.: Strong Plasmonic enhancement of Photovoltage in graphene. Nat. Commun. 2, 458 (2011)

    Article  Google Scholar 

  50. Schedin, F., Lidorikis, E., Lombardo, A., Kravets, V.G., Geim, A.K., Grigorenko, A.N., Novoselov, K.S., Ferrari, A.C.: Surface-enhanced Raman spectroscopy of graphene. ACS Nano. 4, 5617–5626 (2010)

    Article  Google Scholar 

  51. Mertens, J., Eiden, A.L., Sigle, D.O., Huang, F., Lombardo, A., Sun, Z., Sundaram, R.S., Colli, A., Tserkezis, C., Aizpurua, J., Milana, S., Ferrari, A.C., Baumberg, J.J.: Controlling subnanometer gaps in Plasmonic dimers using graphene. Nano Lett. 13, 5033–5038 (2013)

    Article  Google Scholar 

  52. Liu, Y., Cheng, R., Liao, L., Zhou, H., Bai, J., Liu, G., Liu, L., Huang, Y., Duan, X.: Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011)

    Article  Google Scholar 

  53. Thongrattanasiri, S., Koppens, F.H., Garcia de Abajo, F.J.: Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  Google Scholar 

  54. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, F.P., Gatti, F., Koppens, F.H.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012)

    Article  Google Scholar 

  55. Rowe, M.A., Gansen, E.J., Greene, M., Hadfield, R.H., Harvey, T.E., Su, M.Y., Nam, S.W., Mirin, R.P., Rosenberg, D.: Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006)

    Article  Google Scholar 

  56. Guo, W., Xu, S., Wu, Z., Wang, N., Loy, M.M., Du, S.: Oxygen-assisted charge transfer between Zno quantum dots and graphene. Small. 9, 3031–3036 (2013)

    Article  Google Scholar 

  57. McDonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., Sargent, E.H.: Solution-processed Pbs quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005)

    Article  Google Scholar 

  58. Liu, Z., Lau, S.P., Yan, F.: Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44, 5638–5679 (2015)

    Article  Google Scholar 

  59. Riazimehr, S., Kataria, S., Bornemann, R., Bolivar, P.H., Ruiz, F.J.G., Engstrom, O., Godoy, A., Lemme, M.C.: High photocurrent in gated graphene-silicon hybrid photodiodes. ACS Photonics. 4, 1506–1514 (2017)

    Article  Google Scholar 

  60. Riazimehr, S., Kataria, S., Gonzalez-Medina, J.M., Wagner, S., Shaygan, M., Suckow, S., Ruiz, F.G., Engström, O., Godoy, A., Lemme, M.C.: High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating Schottky and gated regions. ACS Photonics. 6(107), 107–115 (2018)

    Google Scholar 

  61. Amirmazlaghani, M., Raissi, F., Habibpour, O., Vukusic, J., Stake, J.: Graphene-Si Schottky Ir detector. IEEE J. Quantum Electron. 49(589), 589–594 (2013)

    Article  Google Scholar 

  62. Huang, K., Yan, Y., Li, K., Khan, A., Zhang, H., Pi, X., Yu, X., Yang, D.: High and fast response of a graphene-silicon photodetector coupled with 2d fractal platinum nanoparticles. Adv. Optical Mat. 6, 1700793 (2018)

    Article  Google Scholar 

  63. Xiang, D., Han, C., Hu, Z., Lei, B., Liu, Y., Wang, L., Hu, W.P., Chen, W.: Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small. 11, 4829–4836 (2015)

    Article  Google Scholar 

  64. Li, X., Zhu, M., Du, M., Lv, Z., Zhang, L., Li, Y., Yang, Y., Yang, T., Li, X., Wang, K., Zhu, H., Fang, Y.: High detectivity graphene-silicon heterojunction photodetector. Small. 12, 595–601 (2016)

    Article  Google Scholar 

  65. Kim, J., Joo, S.S., Lee, K.W., Kim, J.H., Shin, D.H., Kim, S., Choi, S.H.: Near-ultraviolet-sensitive graphene/porous silicon photodetectors. ACS Appl. Mater. Interfaces. 6, 20880–20886 (2014)

    Article  Google Scholar 

  66. Luo, L.B., Zeng, L.H., Xie, C., Yu, Y.Q., Liang, F.X., Wu, C.Y., Wang, L., Hu, J.G.: Light trapping and surface Plasmon enhanced high-performance Nir photodetector. Sci. Rep. 4, 3914 (2014)

    Article  Google Scholar 

  67. Babichev, A.V., Zhang, H., Lavenus, P., Julien, F.H., Egorov, A.Y., Lin, Y.T., Tu, L.W., Tchernycheva, M.: Gan nanowire ultraviolet photodetector with a graphene transparent contact. Appl. Phys. Lett. 103, 201103 (2013)

    Article  Google Scholar 

  68. Luo, L.-B., Chen, J.-J., Wang, M.-Z., Hu, H., Wu, C.-Y., Li, Q., Wang, L., Huang, J.-A., Liang, F.-X.: Near-infrared light photovoltaic detector based on Gaas Nanocone Array/monolayer graphene Schottky junction. Adv. Funct. Mater. 24(2794), 2794–2800 (2014)

    Article  Google Scholar 

  69. Lee, C.-J., Kang, S.-B., Cha, H.-G., Won, C.-H., Hong, S.-K., Cho, B.-J., Park, H., Lee, J.-H., Hahm, S.-H.: Gan metal–semiconductor–metal Uv sensor with multi-layer graphene as Schottky electrodes. Jpn. J. Appl. Phys. 54, 06ff08 (2015)

    Article  Google Scholar 

  70. Luo, L.-B., Hu, H., Wang, X.-H., Lu, R., Zou, Y.-F., Yu, Y.-Q., Liang, F.-X.: A graphene/Gaas near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C. 3(4723), 4723–4728 (2015)

    Article  Google Scholar 

  71. Baeg, K.J., Binda, M., Natali, D., Caironi, M., Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013)

    Article  Google Scholar 

  72. Jang, S., Hwang, E., Lee, Y., Lee, S., Cho, J.H.: Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 15, 2542–2547 (2015)

    Article  Google Scholar 

  73. Liu, X., Luo, X., Nan, H., Guo, H., Wang, P., Zhang, L., Zhou, M., Yang, Z., Shi, Y., Hu, W., Ni, Z., Qiu, T., Yu, Z., Xu, J.B., Wang, X.: Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors. Adv. Mater. 28, 5200–5205 (2016)

    Article  Google Scholar 

  74. Lee, Y., Kwon, J., Hwang, E., Ra, C.H., Yoo, W.J., Ahn, J.H., Park, J.H., Cho, J.H.: High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015)

    Article  Google Scholar 

  75. Dang, V.Q., Han, G.-S., Trung, T.Q., Duy, L.T., Jin, Y.-U., Hwang, B.-U., Jung, H.-S., Lee, N.-E.: Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors. Carbon. 105(353), 353–361 (2016)

    Article  Google Scholar 

  76. Chang, P.H., Liu, S.Y., Lan, Y.B., Tsai, Y.C., You, X.Q., Li, C.S., Huang, K.Y., Chou, A.S., Cheng, T.C., Wang, J.K., Wu, C.I.: Ultrahigh responsivity and detectivity graphene-perovskite hybrid phototransistors by sequential vapor deposition. Sci. Rep. 7, 46281 (2017)

    Article  Google Scholar 

  77. Xie, C., Yan, F.: Perovskite/poly(3-Hexylthiophene)/graphene multiheterojunction phototransistors with ultrahigh gain in broadband wavelength region. ACS Appl. Mater. Interfaces. 9, 1569–1576 (2017)

    Article  Google Scholar 

  78. Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015)

    Article  Google Scholar 

  79. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

    Article  Google Scholar 

  80. Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., Calado, V.E., van der Zant, H.S., Steele, G.A.: Laser-thinning of Mos(2): on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012)

    Article  Google Scholar 

  81. Mattheiss, L.F.: Band structures of Transition-Metal-Dichalcogenide layer compounds. Phys. Rev. B. 8(3719), 3719–3740 (1973)

    Article  Google Scholar 

  82. Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)

    Article  Google Scholar 

  83. Massicotte, M., Schmidt, P., Vialla, F., Schadler, K.G., Reserbat-Plantey, A., Watanabe, K., Taniguchi, T., Tielrooij, K.J., Koppens, F.H.: Picosecond Photoresponse in Van Der Waals Heterostructures. Nat. Nanotechnol. 11, 42–46 (2016)

    Article  Google Scholar 

  84. Long, M., Liu, E., Wang, P., Gao, A., Xia, H., Luo, W., Wang, B., Zeng, J., Fu, Y., Xu, K., Zhou, W., Lv, Y., Yao, S., Lu, M., Chen, Y., Ni, Z., You, Y., Zhang, X., Qin, S., Shi, Y., Hu, W., Xing, D., Miao, F.: Broadband photovoltaic detectors based on an atomically thin Heterostructure. Nano Lett. 16, 2254–2259 (2016)

    Article  Google Scholar 

  85. Roy, K., Padmanabhan, M., Goswami, S., Sai, T.P., Ramalingam, G., Raghavan, S., Ghosh, A.: Graphene-Mos2 hybrid structures for multifunctional Photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013)

    Article  Google Scholar 

  86. Tan, H., Fan, Y., Zhou, Y., Chen, Q., Xu, W., Warner, J.H.: Ultrathin 2d photodetectors utilizing chemical vapor deposition grown Ws2 with graphene electrodes. ACS Nano. 10, 7866–7873 (2016)

    Article  Google Scholar 

  87. Liu, Y., Shivananju, B.N., Wang, Y., Zhang, Y., Yu, W., Xiao, S., Sun, T., Ma, W., Mu, H., Lin, S., Zhang, H., Lu, Y., Qiu, C.W., Li, S., Bao, Q.: Highly efficient and air-stable infrared photodetector based on 2d layered graphene-black phosphorus Heterostructure. ACS Appl. Mater. Interfaces. 9, 36137–36145 (2017)

    Article  Google Scholar 

  88. Mudd, G.W., Svatek, S.A., Hague, L., Makarovsky, O., Kudrynskyi, Z.R., Mellor, C.J., Beton, P.H., Eaves, L., Novoselov, K.S., Kovalyuk, Z.D., Vdovin, E.E., Marsden, A.J., Wilson, N.R., Patane, A.: High broad-band Photoresponsivity of mechanically formed Inse-graphene Van Der Waals Heterostructures. Adv. Mater. 27, 3760–3766 (2015)

    Article  Google Scholar 

  89. Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G., Mueller, T.: Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012)

    Article  Google Scholar 

  90. Efetov, D.K., Shiue, R.J., Gao, Y., Skinner, B., Walsh, E.D., Choi, H., Zheng, J., Tan, C., Grosso, G., Peng, C., Hone, J., Fong, K.C., Englund, D.: Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018)

    Article  Google Scholar 

  91. Engel, M., Steiner, M., Lombardo, A., Ferrari, A.C., Lohneysen, H.V., Avouris, P., Krupke, R.: Light-matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 3, 906 (2012)

    Article  Google Scholar 

  92. Wang, X., Cheng, Z., Xu, K., Tsang, H.K., Xu, J.-B.: High-responsivity graphene/silicon-Heterostructure waveguide photodetectors. Nat. Photonics. 7(888), 888–891 (2013)

    Article  Google Scholar 

  93. Goykhman, I., Sassi, U., Desiatov, B., Mazurski, N., Milana, S., de Fazio, D., Eiden, A., Khurgin, J., Shappir, J., Levy, U., Ferrari, A.C.: On-Chip integrated, silicon-graphene Plasmonic Schottky photodetector with high responsivity and avalanche Photogain. Nano Lett. 16, 3005–3013 (2016)

    Article  Google Scholar 

  94. Gao, Y., Tao, L., Tsang, H.K., Shu, C.: Graphene-on-silicon nitride waveguide photodetector with interdigital contacts. Appl. Phys. Lett. 112 (2018)

    Google Scholar 

  95. Naiini, M.M., Vaziri, S., Smith, A.D., Lemme, M.C., Ostling, M.: Embedded graphene photodetectors for silicon photonics. Proc. 72nd Device Res. Conf., 43–44 (2014). https://doi.org/10.1109/drc.2014.6872291

  96. Li, M., Pernice, W.H., Xiong, C., Baehr-Jones, T., Hochberg, M., Tang, H.X.: Harnessing optical forces in integrated photonic circuits. Nature. 456, 480–484 (2008)

    Article  Google Scholar 

  97. Li, H., Anugrah, Y., Koester, S.J., Li, M.: Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101, 111110 (2012)

    Article  Google Scholar 

  98. Pospischil, A., Humer, M., Furchi, M.M., Bachmann, D., Guider, R., Fromherz, T., Mueller, T.: Cmos-compatible graphene photodetector covering all optical communication bands. Nat. Photonics. 7(892), 892–896 (2013)

    Article  Google Scholar 

  99. Gan, X., Shiue, R.-J., Gao, Y., Meric, I., Heinz, T.F., Shepard, K., Hone, J., Assefa, S., Englund, D.: Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics. 7(883), 883–887 (2013)

    Article  Google Scholar 

  100. Ma, Q., Lui, C.H., Song, J.C.W., Lin, Y., Kong, J.F., Cao, Y., Dinh, T.H., Nair, N.L., Fang, W., Watanabe, K., Taniguchi, T., Xu, S.-Y., Kong, J., Palacios, T., Gedik, N., Gabor, N.M., Jarillo-Herrero, P.: Giant intrinsic Photoresponse in pristine graphene. Nat. Nanotechnol. 14, 145–150 (2019)

    Article  Google Scholar 

  101. Yin, J., Peng, H.: Asymmetry allows photocurrent in intrinsic graphene. Nat. Nanotechnol. 14, 105–106 (2019)

    Article  Google Scholar 

  102. Lee, W., Liu, Y., Lee, Y., Sharma, B.K., Shinde, S.M., Kim, S.D., Nan, K., Yan, Z., Han, M., Huang, Y., Zhang, Y., Ahn, J.H., Rogers, J.A.: Two-dimensional materials in functional three-dimensional architectures with applications in Photodetection and imaging. Nat. Commun. 9, 1417 (2018)

    Article  Google Scholar 

  103. De Fazio, D., Goykhman, I., Yoon, D., Bruna, M., Eiden, A., Milana, S., Sassi, U., Barbone, M., Dumcenco, D., Marinov, K., Kis, A., Ferrari, A.C.: High responsivity, large-area graphene/Mos2 flexible photodetectors. ACS Nano. 10, 8252–8262 (2016)

    Article  Google Scholar 

  104. Li, J., Naiini, M.M., Vaziri, S., Lemme, M.C., Östling, M.: Inkjet printing of Mos2. Adv. Funct. Mater. 24, 6524–6531 (2014)

    Article  Google Scholar 

  105. Smith, A.D., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A.C., Sterner, M., Forsberg, F., Delin, A., Esseni, D., Palestri, P., Ostling, M., Lemme, M.C.: Electromechanical Piezoresistive sensing in suspended graphene membranes. Nano Lett. 13, 3237–3242 (2013)

    Article  Google Scholar 

  106. Lee, J., Lee, C.-J., Kang, J., Park, H., Kim, J., Choi, M., Park, H.: Multifunctional graphene sensor for detection of environment signals using a decoupling technique. Solid State Electron. 151, 40–46 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Östling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Östling, M. (2023). Photodetectors Based on Emerging Materials. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics