Skip to main content

X-Ray Detectors

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Abstract

The basic principle of operation of an x-ray detector is described through the Shockley-Ramo theorem, and the ionization energy, i.e., electron and hole pair creation energy, is introduced and used in formulating the responsivity of the detector. Typical detector materials and structures are also described. The spectroscopic detector operation is explained and its resolution is discussed. One of the most extensive modern applications of semiconductor detectors is in medical x-ray imaging. Flat panel x-ray imagers (FPXIs) are described in detail due to their extensive use in imaging. In direct conversion (DC) FPXIs, the absorbed x-ray photons are directly converted to charges in the pixel’s photoconductor. The applied field then drifts them to the collecting electrodes of the pixel. These FPXIs use either a thin-film transistor (TFT) active matrix array (AMA) on a glass substrate, based on a-Si:H technology or, in a smaller area, CMOS (complementary metal oxide semiconductor), CCD (charge-coupled device), or ASIC (application-specific integrated circuit) silicon chips as the sensor to read the image. The image is a charge distribution on the pixels of the TFT-AMA/CMOS. The TFT-AMA and CMOS are currently the most popular with larger size detectors based on the TFT-AMA sensor. A semiconductor, such as a-Se, HgI2, and CdZnTe, is used with these readout technologies as the photoconductive medium. The current competition between TFT-AMA and CMOS sensors discussed and the advantages and disadvantages of various semiconductors are highlighted. Present DC FPXI principles are reviewed, important physical phenomena are underlined, and the sensitivity, responsivity, linearity, signal-to-noise ratio, noise sources, and resolution, in terms of modulation transfer function, detective quantum efficiency, and lag and ghosting properties of FPXIs, are examined and explained with examples and extensive references where details can be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shockley, W.: Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938)

    Article  Google Scholar 

  2. Ramo, S.: Current induced by electron motion. Proc. IRE. 27, 584–585 (1939)

    Article  Google Scholar 

  3. Devanathan, R., Corrales, L.R., Gao, F., Weber, W.J.: Signal variance in gamma-ray detectors – a review. Nucl. Inst. Methods Phys. Res. A. 565, 637–649 (2006)

    Article  Google Scholar 

  4. Shockley, W.: Problems related to p-n junctions in silicon. Czechoslov. J. Phys. 11, 81–121 (1961). https://doi.org/10.1007/BF01688613

    Article  Google Scholar 

  5. Klein, C.A.: Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968)

    Article  Google Scholar 

  6. Alig, R.C., Bloom, S.: Electron-hole-pair creation energies in semiconductors. Phys. Res. Lett. 35, 1522–1525 (1975)

    Article  Google Scholar 

  7. Takahashi, T., Watanabe, S.: Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48, 950–959 (2001)

    Article  Google Scholar 

  8. Szeles, C., Cameron, S.E., Ndap, J.-O., Chalmer, W.C.: Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications. IEEE Trans. Nucl. Sci. 49, 2535 (2002)

    Article  Google Scholar 

  9. Owens, A., Peacock, A.: Compound semiconductor radiation detectors. Nucl. Inst. Methods Phys. Res. A. 531, 18–37 (2004)

    Article  Google Scholar 

  10. Sellin, P.J.: Recent advances in compound semiconductor radiation detectors. Nucl. Inst. Methods Phys. Res. A. 513, 332–339 (2003)

    Article  Google Scholar 

  11. Owens, A.: Semiconductor materials and radiation detection. J. Synchrotron Radiat. 13, 143–150 (2006)

    Article  Google Scholar 

  12. Sordo, S.D., Abbene, L., Caroli, E., Mancini, A.M., Zappettini, A., Ubertini, P.: Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 9, 3491–3526 (2009)

    Article  Google Scholar 

  13. Szeles, C.: CdZnTe and CdTe crystals for medical applications. In: Iwanczyk, J.S. (ed.) Radiation Detectors for Medical Imaging, pp. 1–16. CRC Press, Boca Raton (2016)

    Google Scholar 

  14. Mirzaei, A., Huh, J.-S., Kim, S.S., Kim, H.W.: Room temperature hard radiation detectors based on solid statecompound semiconductors: an overview. Electron. Mater. Lett. 14, 261 (2018)

    Article  Google Scholar 

  15. Pennicard, D., Pirard, B., Tolbanov, O., Iniewski, K.: Semiconductor materials for x-ray detectors. MRS Bull. 42(445), 5 (2017)

    Google Scholar 

  16. Owens, A.: Compound Semiconductor Radiation Detectors. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  17. Owens, A.: Semiconductor Radiation Detectors. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  18. Owens, A.: Photonductive materials. In: Kasap, S.O. (ed.) Photonductivity and Photonductive Materials. Wiley, Chichester (2022) Ch. 10 (See references therein)

    Google Scholar 

  19. Lioliou, G., Meng, X., Ng, J.S., Barnett, A.M.: Characterization of gallium arsenide x-ray mesa p-i-n photodiodes at room temperature. Nucl. Inst. Methods Phys. Res. A. 813, 1–9 (2016)

    Article  Google Scholar 

  20. Owens, A., Bavdaz, M., Peacock, A., Poelaert, A.: High resolution x-ray spectroscopy using GaAs arrays. J. Appl. Phys. 90, 5376 (2001)

    Article  Google Scholar 

  21. Lees, J.E., Barnett, A.M., Bassford, D.J., Stevens, R.C., Horsfall, A.B.: SiC x-ray detectors for harsh environments. J. Instrum. 6, 1–9 (2011). https://doi.org/10.1088/1748-0221/6/01/C01032

    Article  Google Scholar 

  22. Bertuccioa, G., Caccia, S., Puglisi, D., Macera, D.: Advances in silicon carbide x-ray detectors. Nucl. Inst. Methods Phys. Res. A. 652, 193–196 (2011)

    Article  Google Scholar 

  23. Kasap, S.O.: Optoelectronics and Photonics: Principles and Practices, 2nd edn. Pearson, Upper Saddle River (2013)

    Google Scholar 

  24. Kasap, S.O.: Photonductivity: fundamental concepts. In: Kasap, S.O. (ed.) Photonductivity and Photonductive Materials. Wiley, Chichester (2022) Ch. 1

    Chapter  Google Scholar 

  25. Knoll, G.F.: Radiation Detection and Measurement, 3rd edn. Wiley, New York (2000)

    Google Scholar 

  26. Spieler, H.: Semiconductor Detector Systems. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  27. Ahmed, S.N.: Physics and Engineering of Radiation Detection, 2nd edn. Elsevier, Amsterdam (2016)

    Google Scholar 

  28. Tsoulfanidis, N., Landsberger, S.: Measurement and Detection of Radiation, 4th edn. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  29. Fano, U.: Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev. 72, 26 (1947)

    Article  Google Scholar 

  30. Grupen, C., Shwartz, B.: Particle Detectors, 2nd edn. Cambridge University Press, Cambridge (2008) Chapter 1

    Book  Google Scholar 

  31. Hecht, K.: For the mechanism of the photoelectric primary current in insulating crystals. Z. Phys. 77, 235–245 (1932)

    Article  Google Scholar 

  32. Iwanczyk, J.S., Schnepple, F., Masterson, M.J.: The effect of charge trapping on the spectroscopic performance of HgI2 gamma-ray detectors. Nucl. Inst. Methods Phys. Res. A. 322, 421–426 (1992)

    Article  Google Scholar 

  33. Ruzin, A., Nemirovsky, Y.: Statistical models for charge collection efficiency and variance in semiconductor spectrometers. J. Appl. Phys. 82, 2754–2758 (1997)

    Article  Google Scholar 

  34. Nemirovsky, Y.: Statistical modeling of charge collection in semiconductor gamma-ray spectrometers. J. Appl. Phys. 85, 8–15 (1999)

    Article  Google Scholar 

  35. Barton, P., Amman, M., Martin, R., Vetter, K.: Nucl. Inst. Methods Phys. Res. A. 812, 17–23 (2016)

    Article  Google Scholar 

  36. Spahn, M.: Flat detectors and their clinical applications. Eur. Radiol. 15, 1934 (2005)

    Article  Google Scholar 

  37. Cowen, A.R., Kengyelics, S.M., Davies, A.G.: Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin. Radiol. 63, 487–498 (2008)

    Article  Google Scholar 

  38. Spahn, M.: X-Ray detectors in medical imaging. Nucl. Inst. Methods Phys. Res. A. 731, 57–63 (2013)

    Article  Google Scholar 

  39. Yorkston, J.: Recent developments in digital radiography detectors. Nucl. Inst. Methods Phys. Res. A. 580, 974–985 (2007)

    Article  Google Scholar 

  40. Karim, K.: Active matrix flat panel imagers. In: Iniewski, K. (ed.) Medical Imaging, pp. 23–58. Wiley, New York (2009) Chapter 2

    Chapter  Google Scholar 

  41. Yaffe, M.: Detectors for digital mammography. In: Bick, U., Diemann, F. (eds.) Digital Mammography. Springer, New York (2010) Chapter 2

    Google Scholar 

  42. Seco, J., Clasie, B., Partridge, M.: Review on the characteristics of radiation detectors for dosimetry and imaging. Phys. Med. Biol. 59, R303–R347 (2014)

    Article  Google Scholar 

  43. Vedantham, S., Karellas, A., Vijayaraghavan, G.R., Kopans, D.B.: Digital breast Tomosynthesis: state of the art. Radiology. 277, 663–684 (2015)

    Article  Google Scholar 

  44. Panetta, D.: Advances in x-ray detectors for clinical and preclinical computed tomography. Nucl. Inst. Methods Phys. Res. A. 809, 2–12 (2016)

    Article  Google Scholar 

  45. Zhao, W.: Detectors for Tomosynthesis. In: Reiser, I., Glick, S. (eds.) The Tomosynthesis Imaging. CRC Press, Boca Raton (2017) Chapter 3

    Google Scholar 

  46. Fredenberg, E.: Spectral and dual-energy x-ray imaging for medical applications. Nucl. Inst. Methods Phys. Res. A. 878, 74–87 (2018)

    Article  Google Scholar 

  47. Kasap, S., Rowlands, J.A.: Direct-conversion flat-panel x-ray image sensors for digital radiography. Proc. IEEE. 94, 591–604 (2002)

    Article  Google Scholar 

  48. Rowlands, J.A., Yorkston, J.: Flat panel detector for digital radiography. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging, vol. 1, pp. 225–313. SPIE Press, Bellingham (2000) Chapter 4

    Google Scholar 

  49. Schieber, M.M., Hermon, H., Zuck, A., Vilensky, A.I., Melekhov, L., Lukach, M., Meerson, E., Saado, Y., Shtekel, E., Reisman, B., Zentai, G., Partain, L., Seppi, E., Pavlyuchkova, R., Virshup, G., Street, R.A., Ready, S.E.: Nondestructive imaging with mercuric iodide thick film x-ray detectors. Proc. SPIE. 4335 (2001). https://doi.org/10.1117/12.434200

  50. Lee, D.L.Y., Golden, K.P., Yorker, J.G., Rodricks, B.G., Cheung, L.K., Jeromin, L.S.: Direct-conversion x-ray imaging detectors for medical nondestructive testing (NDT) and other applications. Proc. SPIE. 4508 (2001). https://doi.org/10.1117/12.450782

  51. Ponpon, J.P.: Semiconductor detectors for 2D x-ray imaging. Nucl. Inst. Methods Phys. Res. A. 551, 15–26 (2005)

    Article  Google Scholar 

  52. Kasap, S., Frey, J.B., Belev, G., Tousignant, O., Mani, H., Greenspan, J., Laperriere, L., Bubon, O., Reznik, A., DeCrescenzo, G., Karim, K.S., Rowlands, J.A.: Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors: review. Sensors. 11, 5112–5157 (2011)

    Article  Google Scholar 

  53. Jiang, H., Zhao, Q., Antonuk, L.E., El-Mohri, Y., Gupta, T.: Development of active matrix flat panel imagers incorporating thin layers of polycrystalline HgI2 for mammographic x-ray imaging. Phys. Med. Biol. 58, 703–714 (2013)

    Article  Google Scholar 

  54. Zhao, W., Rowlands, J.A., Germann, S., Waechter, D.F., Huang, Z.: Digital radiology using self-scanned readout of amorphous selenium: design considerations for mammography. Proc. SPIE. 2432, 250 (1995)

    Article  Google Scholar 

  55. Zhao, W., Rowlands, J.A.: x-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. Med. Phys. 22, 1595–1604 (1995)

    Article  Google Scholar 

  56. Zhao, W., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: construction and evaluation of prototype real-time detector. Med. Phys. 24, 1834–1843 (1997)

    Article  Google Scholar 

  57. Rowlands, J.A., Zhao, W., Blevis, I.M., Waechter, D., Huang, Z.: Flat panel digital radiology with amorphous selenium and active matrix readout. Radiographics. 17, 753–760 (1997)

    Article  Google Scholar 

  58. Yaffe, M.J., Rowlands, J.A.: x-ray detectors for digital radiology. Phys. Med. Biol. 42, 1–39 (1997)

    Article  Google Scholar 

  59. Zhao, W., Blevis, I.M., Waechter, D.F., Huang, Z., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: construction and evaluation of a prototype real-time detector. Med. Phys. 24, 1834–1843 (1997)

    Article  Google Scholar 

  60. Lee, D.L.Y., Cheung, L.K., Jeromin, L.S.: A new digital detector for projection radiography. Proc. SPIE. 2432, 237 (1995). https://doi.org/10.1117/12.208342

    Article  Google Scholar 

  61. Lee, D.L.Y., Cheung, L.K., Palecki, E.F.L.S.: Jeromin: discussion on resolution and dynamic range of Se-TFT direct digital radiographic detector. Proc. SPIE. 2708, 511 (1996). https://doi.org/10.1117/12.237813

    Article  Google Scholar 

  62. Lee, D.L.Y., Cheung, L.K., Jeromin, L.S., Palecki, E.F., Rodricks, B.G.: Radiographic imaging characteristics of a direct conversion detector using selenium and thin film transistor array. Proc. SPIE. 3032 (1997). https://doi.org/10.1117/12.273973

  63. Zhao, W., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: theoretical evaluation of detective quantum efficiency. Med. Phys. 24, 1819–1833 (1997)

    Article  Google Scholar 

  64. Zhao, W., Law, J., Waechter, D.F., Huang, Z., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: detectors with self-protection against high voltage damage. Med. Phys. 25, 539–549 (1998)

    Article  Google Scholar 

  65. Zhao, W., Ji, W.G., Rowlands, J.A.: Effects of characteristic x-rays on the noise power spectra and detective quantum efficiency of photoconductive x-ray detectors. Med. Phys. 28, 2039–2049 (2001)

    Article  Google Scholar 

  66. Nathan, A., Park, B., Ma, Q., Sazonov, A., Rowlands, J.A.: Amorphous silicon technology for large area digital x-ray and optical imaging. Microelectron. Reliab. 42, 735–746 (2002)

    Article  Google Scholar 

  67. Hirono, T., Toyokawa, H., Furukawa, Y., Kawase, M., Ohata, T., Wu, S., Ikeda, H., Sato, G., Takahashi, T., Watanabe, S.: Nucl. Inst. Methods Phys. Res. A. 731, 64–67 (2013)

    Article  Google Scholar 

  68. Veale, M.C.: CdTe and CdZnTe small pixel imaging detectors. In: Awadalla, S. (ed.) Solid-State Radiation Detectors: Technology and Applications. CRC Press, Boca Raton (2015) Chapter 3

    Google Scholar 

  69. Yin, S., Tümer, T.O., Maeding, D., Mainprize, J., Mawdsley, G., Yaffe, M.J., Gordon, E.E., Hamilton, W.J.: Direct conversion CdZnTe and CdTe detectors for digital mammography. IEEE Trans. Nucl. Sci. 49, 176–181 (2002)

    Article  Google Scholar 

  70. Mainprize, J.G., Ford, N.L., Yin, S., Gordon, E.E., Hamilton, W.J., Tümer, T.O., Yaffe, M.J.: A CdZnTe slot-scanned detector for digital mammography. Med. Phys. 29, 2767–2781 (2002)

    Article  Google Scholar 

  71. Andre, M.P., Spivey, B., Martin, P., Morsel, L., Atlas, E., Pellegrino, T.: Integrated CMOS-selenium x-ray detector for digital mammography. Proc. SPIE. 3336, 204–209 (1998)

    Article  Google Scholar 

  72. Farrier, M., Achterkirchen, T.G., Weckler, G.P., Mrozack, A.: Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans. Electron. Devices. 56, 2623–2631 (2009)

    Article  Google Scholar 

  73. Hartsough, N.E., Iwanczyk, J.S., Nygard, E., Malakhov, N., Barber, W.C., Gandhi, T.: Polycrystalline mercuric iodide films on CMOS readout arrays. IEEE Trans. Nucl. Sci. 56, 1810–1816 (2009)

    Article  Google Scholar 

  74. Konstantinidis, A.C., Szafraniec, M.B., Speller, R.D., Olivo, A.: The Dexela 2923 CMOS x-ray detector: a flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Inst. Methods Phys. Res. A. 689, 12–21 (2012)

    Article  Google Scholar 

  75. Kasap, S.O., Koughia, K.V., Fogal, B., Belev, G., Johanson, R.E.: The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors. 37, 789–794 (2003)

    Article  Google Scholar 

  76. Kasap, S.O.: Doped and stabilized amorphous selenium single and multilayer photoconductive layers for x-ray imaging detector applications. In: Kasap, S.O. (ed.) Photoconductivity and Photoconductive Materials. Wiley, Chichester (2022). Ch. 18

    Chapter  Google Scholar 

  77. Mahmood, S.A., Kabir, M.Z., Tousignant, O., Mani, H., Greenspan, J., Botka, P.: Dark current in multilayer amorphous selenium x-ray imaging detectors. Appl. Phys. Lett. 92, 223506 (2008)

    Article  Google Scholar 

  78. Polischuk, B.T., Jean, A.: Multilayer plate for x-ray imaging and method of producing same, US Patent 5, 880, 472 (1999)

    Google Scholar 

  79. Frey, J.B., Belev, G., Tousignant, O., Mani, H., Laperriere, L., Kasap, S.O.: Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors. J. Appl. Phys. 112, 014502 (2012)

    Article  Google Scholar 

  80. Frey, J.B., Sadasivam, K., Belev, G., Mani, H., Laperriere, L., Kasap, S.O.: Dark current–voltage characteristics of vacuum deposited multilayer amorphous selenium-alloy detectors and the effect of x-ray irradiation. J. Vac. Sci. Technol. A. 37, 061501 (2019)

    Article  Google Scholar 

  81. Pang, G., Zhao, W., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: geometrical and effective fill factors. Med. Phys. 25, 1636–1646 (1998)

    Article  Google Scholar 

  82. Matsuura, N., Zhao, W., Huang, Z., Rowlands, J.A.: Digital radiology using active matrix readout: amplified pixels for fluoroscopy. Med. Phys. 26, 672–681 (1999)

    Article  Google Scholar 

  83. Pang, G., Lee, D.L., Rowlands, J.A.: Investigation of a direct conversion flat panel imager for portal imaging. Med. Phys. 28, 2121–2128 (2001)

    Article  Google Scholar 

  84. Pang, G., Rowlands, J.A.: Development of high quantum efficiency flat panel detectors for portal imaging: intrinsic spatial resolution. Med. Phys. 29, 2274–2285 (2002)

    Article  Google Scholar 

  85. Zhao, W., Ji, W., Debrie, A., Rowlands, J.A.: Imaging performance of amorphous selenium based flat panel detectors for mammography: characterization of small area prototype detector. Med. Phys. 30, 254–263 (2003)

    Article  Google Scholar 

  86. Hunt, D.C., Tousignant, O., Rowlands, J.A.: Evaluation of the imaging properties of an amorphous selenium-based flat panel detector for digital fluoroscopy. Med. Phys. 31, 1166–1175 (2004)

    Article  Google Scholar 

  87. Zhao, W., Hunt, D.C., Tanioka, K., Rowlands, J.A.: Amorphous selenium flat panel detectors for medical applications. Nucl. Inst. Methods Phys. Res. A. 549, 205–209 (2005)

    Article  Google Scholar 

  88. Tousignant, O., Demers, Y., Laperriere, L.: a-Se flat panel detectors for medical application. In: 2007 IEEE Sensors Applications Symposium, San Diego, CA, USA, 25 June 2007. https://doi.org/10.1109/SAS.2007.374373

  89. Zentai, G.: Photoconductor-based (direct) large-area x-ray imagers. J. Soc. Inf. Disp. 17(6), 543–550 (2009). https://doi.org/10.1889/JSID17.6.543

    Article  Google Scholar 

  90. Destefano, N., Mulato, M.: Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl. Inst. Methods Phys. Res. A. 624, 114–117 (2010)

    Article  Google Scholar 

  91. Bennett, P.R., Shah, K.S., Cirignano, L.J., Klugerman, M.B., Moy, L.P., Squillante, M.R.: Characterization of polycrystalline TlBr films for radiographic detectors. IEEE Trans. Nucl. Sci. 46, 689–693 (1999)

    Article  Google Scholar 

  92. Yun, M., Cho, S., Lee, R., Jang, G., Kim, Y., Shin, W., Nam, S.: Investigation of PbI2 film fabricated by a new sedimentation method as an x-ray conversion material. Jpn. J. Appl. Phys. 49, 041801–041805 (2010)

    Article  Google Scholar 

  93. Shah, K.S., Street, R.A., Dmitriyev, Y., Bennett, P., Cirignano, L., Klugermaa, M., Squillante, M.R., Entine, G.: x-ray imaging with PbI2-based A-Si:H flat panel detectors. Nucl. Inst. Methods Phys. Res. A. 458, 140–114 (2001)

    Article  Google Scholar 

  94. Zhu, X., Sun, H., Yang, D., Wangyang, P., Gao, X.: Comparison of electrical properties of x-ray detector based on PbI2 crystal with different bias electric field configuration. J. Mater. Sci. Mater. Electron. 27, 11798–11803 (2016)

    Article  Google Scholar 

  95. Street, R.A., Ready, S.E., Lemmi, F., Shah, K.S., Bennett, P., Dmitriyev, Y.: Electronic transport in polycrystalline Pbl2 films. J. Appl. Phys. 86, 2660–2667 (1999)

    Article  Google Scholar 

  96. Zhao, Q., Antonuk, L.E., El-Mohri, Y., Wang, Y., Du, H., Sawant, A., Su, Z., Yamamoto, J.: Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med. Phys. 37, 2738–2748 (2010)

    Article  Google Scholar 

  97. Du, H., Antonuk, L.E., El-Mohri, Y., Zhao, Q., Su, Z., Yamamoto, J., Wang, Y.: Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys. Med. Biol. 53, 1325–1351 (2010)

    Article  Google Scholar 

  98. Zentai, G., Partain, L., Pavlyuchkova, R.: Dark current and DQE improvements of mercuric iodide medical imagers. Proc. SPIE. 6510, 65100Q-1–6 (2007). https://doi.org/10.1117/12.713848

    Article  Google Scholar 

  99. Kim, K., et al.: Quantitative evaluation of mercuric iodide thick film for x-ray imaging device. Proc. SPIE. 6142, 61422Z-1–7 (2006). https://doi.org/10.1117/12.653002

    Article  Google Scholar 

  100. Zuck, A., Schieber, M., Khakhan, O., Burshtein, Z.: Near single-crystal electrical properties of polycrystalline HgI2 produced by physical vapor deposition. IEEE Trans. Nucl. Sci. 50, 991 (2003)

    Article  Google Scholar 

  101. Zentai, G., Schieber, M., Partain, L., Pavlyuchkova, R., Proano, C.: Large area mercuric iodide and lead iodide x-ray detectors for medical and non-destructive industrial imaging. J. Cryst. Growth. 275, E1327–E1331 (2005)

    Article  Google Scholar 

  102. Zentai, G., Partain, L.D., Pavlyuchkova, R., Proano, C., Virshup, G.F., Melekhov, L., Zuck, A., Breen, B.N., Dagan, O., Vilensky, A., Schieber, M., Gilboa, H., Bennet, P., Shah, K.S., Dmitriyev, Y.N., Thomas, J.A., Yaffe, M.J., Hunter, D.M.: Mercuric iodide and lead iodide x-ray detectors for radiographic and fluoroscopic medical imaging. SPIE Proc. 5030 (2003). https://doi.org/10.1117/12.480227

  103. Iwanczyk, J.S., Patt, B.E., Tull, C.R., MacDonald, L.R., Skinner, N., Hoffman, E.J., Fornaro, L.: HgI2 polycrystalline films for digital x-ray imagers. IEEE Trans. Nucl. Sci. 49, 160–164 (2002)

    Article  Google Scholar 

  104. Street, R.A., Ready, S.E., van Schuylenbergh, K., Ho, J., Boyec, J.B., Nylen, P., Shah, K., Melekhov, L.: Comparison of PbI2 and HgI2 for direct detection active matrix x-ray image sensors. J. Appl. Phys. 91, 3345–3355 (2002)

    Article  Google Scholar 

  105. Park, J.C., Jeon, P.J., Kim, J.S., Im, S.: Small-dose-sensitive x-ray image pixel with HgI2 photoconductor and amorphous oxide thin-film transistor. Adv. Healthc. Mater. 4, 51–57 (2015)

    Article  Google Scholar 

  106. Schieber, M., Hermon, H., Zuck, A., Vilensky, A., Melekhov, L., Shatunovsky, R., Meerson, E., Saado, Y., Lukach, M., Pinkhasy, E., Ready, S.E., Street, R.A.: Thick films of x-ray polycrystalline mercuric iodide detectors. J. Cryst. Growth. 225, 118–123 (2001)

    Article  Google Scholar 

  107. Schieber, M., Zuck, A., Braiman, M., Nissenbaum, J., Turchetta, R., Dulinski, W., Husson, D., Riester, J.L.: Novel mercuric iodide polycrystalline nuclear particles counters. IEEE Trans. Nucl. Sci. 44, 2571–2576 (1997)

    Article  Google Scholar 

  108. Schieber, M., Hermon, H., Zuck, A., Vilensky, A., Melekhov, L., Shatunovsky, R., Turketa, R.: High-flux x-ray response of composite mercuric iodide detectors. Proc. SPIE. 3768, 296–309 (1999). https://doi.org/10.1117/12.366594

    Article  Google Scholar 

  109. Lee, S., Kim, J.S., Ko, K.R., Lee, G.H., Lee, D.J., Kim, D.W., Kim, J.E., Kim, H.K., Kim, D.W., Im, S.: Direct thermal growth of large scale Cl-doped CdTe film for low voltage high resolution x-ray image sensor. Sci. Rep. 8, 4810 (2018)

    Google Scholar 

  110. Tokuda, S., Kishihara, H., Adachi, S., Sato, T.: Improvement of temporal response and output uniformity of polycrystalline CdZnTe films for high-sensitivity x-ray imaging. Proc. SPIE. 5030, 861–870 (2003). https://doi.org/10.1117/12.479938

    Article  Google Scholar 

  111. Tokuda, S., Kishihara, H., Adachi, S., Sato, T.: Preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity x-ray detectors. J. Mater. Sci. Mater. Electron. 15, 1–8 (2004)

    Article  Google Scholar 

  112. Simon, M., Ford, R.A., Franklin, A.R., Grabowski, S.P., Mensor, B., Much, G., Nascetti, A., Overdick, M., Powell, M.J., Wiechert, D.U.: PbO as direct conversion x-ray detector material. Proc. SPIE. 5368, 188–199 (2004). https://doi.org/10.1117/12.533010

    Article  Google Scholar 

  113. Simon, M., Ford, R.A., Franklin, A.R., Grabowski, S.P., Mensor, B., Much, G., Nascetti, A., Overdick, M., Powell, M.J., Wiechert, D.U.: Analysis of lead oxide (PbO) layers for direct conversion x-ray detection. IEEE Trans. Nucl. Sci. 52, 2035–2040 (2005)

    Article  Google Scholar 

  114. Semeniuk, O., Grynko, O., Decrescenzo, G., Juska, G., Wang, K., Reznik, A.: Characterization of polycrystalline lead oxide for application in direct conversion x-ray detectors. Sci. Rep. 7, 8659 (2017)

    Article  Google Scholar 

  115. Reznik, A., Semeniuk, O.: Lead oxide as material of choice for direct conversion detectors. In: Ray, A. (ed.) Oxide Electronics. Wiley, Chichester (2021) Ch. 7

    Google Scholar 

  116. Grynko, O., Reznik, A.: Progress in lead oxide x-ray photoconductive layers. In: Kasap, S.O. (ed.) Photoconductivity and Photoconductive Materials. Wiley, Chichester (2022) Ch. 17

    Google Scholar 

  117. Gill, H.S., Elshahat, B., Kokila, A., Li, L., Mosurkald, R., Zygmanskie, P., Sajob, E., Kumar, J.: Flexible perovskite based x-ray detectors for dose monitoring in medical imaging applications. Phys. Med. 5, 20–23 (2018)

    Article  Google Scholar 

  118. Yakunin, S., Sytnyk, M., Kriegner, D., Shrestha, S., Richter, M., Matt, G.J., Azimi, H., Brabec, C.J., Stangl, J., Kovalenko, M.V., Heiss, W.: Detection of x-ray photons by solution-processed lead halide perovskites. Nat. Photonics. 9, 444–449 (2015)

    Article  Google Scholar 

  119. Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H., Wang, C., Ecker, B.R., Gao, Y., Loi, M.A., Cao, L., Huang, J.: Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics. 10, 333–339 (2016)

    Article  Google Scholar 

  120. Kim, Y., Kim, K.H., Son, D.Y., Jeong, D.N., Seo, J.Y., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.G.: Printable organometallic perovskite enables large-area, low-dose x-ray imaging. Nature. 550, 88–92 (2017)

    Article  Google Scholar 

  121. Lin, Q.: Metal halide perovskites for photodetection. In: Kasap, S.O. (ed.) Photoconductivity and Photoconductive Materials. Wiley, Chichester (2022) (and references therein)

    Google Scholar 

  122. Chen, C., Li, C., Zhang, H., Dai, Q., Zhou, H.: Solution processed perovskite for direct x-ray detection. In: Proceedings of the 16th International Conference on Nanotechnology (IEEE), Sendai, Japan, 22–25 August, vol. 201, pp. 101–104. https://doi.org/10.1109/NANO.2016.7751377

  123. Rowlands, J.A.: Material change for x-ray detectors. Nature. 550, 47–48 (2017)

    Article  Google Scholar 

  124. Wang, H., Kim, D.H.: Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017)

    Article  Google Scholar 

  125. Sellin, P.J.: Thick film compound semiconductors for x-ray imaging applications. Nucl. Inst. Methods Phys. Res. A. 563, 1–8 (2006)

    Article  Google Scholar 

  126. Fornaro, L.: State of the art of the heavy metal iodides as photoconductors for digital imaging. J. Cryst. Growth. 371, 155–162 (2013)

    Article  Google Scholar 

  127. Yaffe, M.J.: Detectors for digital mammography. In: Bick, U., Diekmann, F. (eds.) Digital Mammography. Medical Radiology. Springer, Berlin/Heidelberg (2010) Chapter 2

    Google Scholar 

  128. Kabir, M.Z.: X-ray photoconductivity and typical large area x-ray photoconductors. In: Kasap, S.O. (ed.) Photoconductivity and Photoconductive Materials. Wiley, Chichester (2022) Ch. 15 (and references therein)

    Google Scholar 

  129. Que, W., Rowlands, J.A.: X-ray photogeneration in amorphous selenium: geminate versus columnar recombination. Phys. Rev. B. 51, 10500–10507 (1995)

    Article  Google Scholar 

  130. Knoll, G.F.: Radiation Detection and Measurement, 3rd edn. Wiley, New York (2000) Chapter 13 (Table 13.3)

    Google Scholar 

  131. Hamel, L.A., Dubeau, J., Pochet, T., Equer, B.: Signal formation in a-Si:H particle detectors. IEEE Trans. Nucl. Sci. 38, 251–254 (1991)

    Article  Google Scholar 

  132. Blevis, I., Hunt, D.C., Rowlands, J.A.: Measurement of x-ray photogeneration in amorphous selenium. J. Appl. Phys. 85, 7958–7963 (1999)

    Article  Google Scholar 

  133. Kasap, S.O.: X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D. Appl. Phys. 33, 2853–2865 (2000)

    Article  Google Scholar 

  134. Bubon, O., Jandieri, K., Baranovskii, S.D., Kasap, S.O., Reznik, A.: Columnar recombination for x-ray generated electron-holes in amorphous selenium and its significance in a-Se x-ray detectors. J. Appl. Phys. 119, 124511 (2016)

    Article  Google Scholar 

  135. Hijazi, N., Panneerselvam, D., Kabir, M.Z.: Electron–hole pair creation energy in amorphous selenium for high energy photon excitation. J. Mater. Sci. Mater. Electron. 29, 486–490 (2018)

    Article  Google Scholar 

  136. Kasap, S.: X-ray photoconductivity of stabilized amorphous selenium. In: Kolobov, A., Shimakawa, K. (eds.) The World Scientific Reference of Amorphous Materials: Structure, Properties, Modeling and Main Applications Volume 1: Structure, Properties, Modeling and Applications of Amorphous Chalcogenides Amorphous Chalcogenides. Wolrd Scientific, Singapore (2021)

    Google Scholar 

  137. Van Heyningent, R.S., Brown, F.C.: Transient photoconductivity in silver chloride at low temperatures. Phys. Rev. 111, 462–468 (1958)

    Article  Google Scholar 

  138. Miller, G.L., Gibson, W.M.: Charge collection in semiconductor detectors. In: Proceedings of Nuclear Electronics I, pp 477–495, Belgrade, 15–20 May, 1961, International Atomic Energy Agency (printed by Brüder Rosenbaum, Vienna), Vienna, 1962. https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/116/43116564.pdf?r=1&r=1

  139. Zullinger, H.R., Aitken, D.W.: Charge collection efficiencies for lithium-drifted silicon and germanium detectors in the x-ray energy region. IEEE Trans. Nucl. Sci. 15, 466 (1968)

    Article  Google Scholar 

  140. Kasap, S.O.: X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D. Appl. Phys. 33, 2853–2865 (2000)

    Article  Google Scholar 

  141. Kabir, M.Z., Kasap, S.O.: Charge collection and absorption-limited sensitivity of x-ray photoconductors: applications to a-Se and HgI2. Appl. Phys. Lett. 80, 1664–1666 (2003)

    Article  Google Scholar 

  142. Ramaswami, K., Johanson, R., Kasap, S.: Charge collection efficiency in photoconductive detectors under small to large signals. J. Appl. Phys. 125, 244503 (2019)

    Article  Google Scholar 

  143. Kasap, S.O., Kabir, M.Z., Ramaswami, K.O., Johanson, R.E., Curry, R.J.: Charge collection efficiency in the presence of non-uniform carrier drift mobilities and lifetimes in photoconductive detectors. J. Appl. Phys. 128, 124501 (2020)

    Article  Google Scholar 

  144. Kasap, S., Ramaswami, K.O., Kabir, M.Z., Johanson, R.: Corrections to the Hecht collection efficiency in photoconductive detectors under large signals: non-uniform electric field due to drifting and trapped unipolar carriers. J. Phys. D. 52, 135104 (2019)

    Article  Google Scholar 

  145. Ramaswami, K.O.: Monte Carlo simulation of drifting charge carriers in photoconductive integrating detectors, MSc, Thesis, University of Saskatchewan (2019)

    Article  Google Scholar 

  146. Zahangir Kabir, M., Emelianova, E.V., Arkhipov, V.I., Yunus, M., Kasap, S.O.: The effects of large signals on charge collection in radiation detectors: application to amorphous selenium detectors. J. Appl. Phys. 99, 124501 (2006)

    Article  Google Scholar 

  147. Johns, H.E., Cunningham, J.R.: The Physics of Radiology, 4th edn. Charles C Thomas Publisher, Springfield (1983)

    Google Scholar 

  148. Boone, J.M.: X-ray production, interaction, and detection in diagnostic imaging. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging, vol. 1, pp. 1–78. SPIE Press, Bellingham (2000) Chapter 1, Equation 1.22b

    Google Scholar 

  149. Maolinbay, M., El-Mohri, Y., Antonuk, L.E., Jee, K.-W., Nassif, S., Rong, X., Zhao, Q.: Additive noise properties of active matrix flat-panel imagers. Med. Phys. 27, 1841–1854 (2000)

    Article  Google Scholar 

  150. Stavro, J., Goldan, A.H., Zhao, W.: Photon counting performance of amorphous selenium and its dependence on detector structure. J. Med. Imaging. 5, 04350 (2018)

    Article  Google Scholar 

  151. Blevis, I.M., Hunt, D.C., Rowlands, J.A.: X-ray imaging using amorphous selenium: determination of Swank factor by pulse height spectroscopy. Med. Phys. 25, 638–641 (1998)

    Article  Google Scholar 

  152. Hooge, F.N., Kleinpenning, T.G.M., Vandamme, L.K.J.: Experimental studies on 1/f noise. Rep. Prog. Phys. 44, 479 (1981)

    Article  Google Scholar 

  153. Jones, B.K.: Electrical noise as a measure of quality and reliability in electronic devices. Adv. Electron. Electron Phys. 87, 201–257 (1994)

    Article  Google Scholar 

  154. Vandamme, L.K.J.: Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans Electron. Devices. 41, 2176–2187 (1994)

    Article  Google Scholar 

  155. Mitin, V., Reggiani, L., Varani, L.: Generation recombination noise in semiconductors. In: Balandin, A. (ed.) Noise and Fluctuations Control in Electronic Devices, pp. 11–29. American Scientific Publishers, Valencia (2003) chapter 2

    Google Scholar 

  156. Weissman, M.B.: 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988)

    Article  Google Scholar 

  157. Copeland, J.A.: Semiconductor impurity analysis from low-frequency noise spectra. IEEE Trans. Electron. Devices. ED-18, 50–53 (1971)

    Article  Google Scholar 

  158. Levinshtein, M.E., Rumyantsev, S.L.: Noise spectroscopy of local levels in semiconductors. Semicond. Sci. Technol. 9, 1183–1189 (1999)

    Article  Google Scholar 

  159. Hill, J.E., van Vliet, K.M.: Generation recombination noise in intrinsic and near-intrinsic germanium crystals. J. Appl. Phys. 29, 177–182 (1958)

    Article  Google Scholar 

  160. Bosman, G., Zijlstra, R.J.J.: Generation-recombination noise in p-type silicon. Solid State Electron. 25, 273–280 (1982)

    Article  Google Scholar 

  161. Hofman, F., Zijlstra, R.J.J., Bettencourt de Freitas, J.M., Henning, J.C.M.: Generation-recombination noise in AlxGa1-xAs: temperature dependence. Semicond. Sci. Technol. 5, 1030–1039 (1990)

    Article  Google Scholar 

  162. Güttler, H.H., Werner, J.H.: Influence of barrier in homogeneities on noise at Schottky contacts. Appl. Phys. Lett. 56, 1113 (1990)

    Article  Google Scholar 

  163. Nemirovsky, Y., Ruzin, A., Asa, G., Gorelik, Y., Li, L.: Study of contacts to CdZnTe radiation detectors. J. Electron. Mater. 26, 756–764 (1997)

    Article  Google Scholar 

  164. Brophy, J.J.: Excess noise in n-type germanium. Phys. Rev. 106, 675–677 (1957)

    Article  Google Scholar 

  165. Sampietro, M., Ferrari, Bertuccio, G.: Current noise spectra in CdTe semiconductor diodes. J. Appl. Phys. 87, 7583–7585 (2000)

    Article  Google Scholar 

  166. Shah, K.S., Lund, J.C., Olschner, F., Bennett, P., Zhang, J., Moy, L.P., Squillante, M.R.: Electronic noise in lead iodide x-ray detectors. Nucl. Instrum. Methods Phys. Res. A. 353, 85–88 (1994)

    Article  Google Scholar 

  167. Ren, L., Leys, M.R.: 1/f noise at room temperature in n-type GaAs grown by molecular beam epitaxy. Physica. 172, 319–323 (1991)

    Article  Google Scholar 

  168. Sikula, J., Koktavy, B., Vasina, P.: 1/f-Noise in indium antimonide. In: Wolf, D. (ed.) Noise in Physical Systems Springer Series in Electrophysics, Vol 2, pp. 148–151. Springer, Berlin/Heidelberg (1978)

    Chapter  Google Scholar 

  169. Meyer, T., Johanson, R., Belev, G., Kasap, S.: Low-frequency noise in a-Se based X-ray photoconductors. In: Proceedings of the 21st International Conference on Noise and Fluctuations, 12–16 June 2011, Toronto, Published by IEEE, NY, pp. 393–396. https://doi.org/10.1109/ICNF.2011.5994352

  170. Johanson, R.E., Guenes, M., Kasap, S.O.: Noise in hydrogenated amorphous silicon. IEE Proc. Circuits Devices Syst. 149, 68–74 (2002)

    Article  Google Scholar 

  171. McDowell, E.J., Ren, J., Yang, C.: Fundamental sensitivity limit imposed by dark 1/f noise in the low optical signal detection regime. Opt. Express. 16, 3833–6832 (2008)

    Article  Google Scholar 

  172. Meyer, T., Johanson, R.E., Kasap, S.: Effect of 1/f noise in integrating sensors and detectors. IET Circuits Devices Syst.5, 177–188 (2011)

    Article  Google Scholar 

  173. Matsuura, N., Zhao, W., Huang, Z., Rowlands, J.A.: Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. Med. Phys. 26, 672–681 (1999)

    Article  Google Scholar 

  174. Karim, K., Nathan, A., Rowlands, J.A.: Amorphous silicon active pixel sensor readout circuit for digital imaging. IEEE Trans. Electron. Devices. 50, 200–208 (2003)

    Article  Google Scholar 

  175. Izadi, M.H., Karim, K.S.: Noise optimization of an active pixel sensor for real-time digital x-ray fluoroscopy. In: Proceedings of the SPIE 6600, Noise and Fluctuations in Circuits, Devices, and Materials, 66000Y, 8 June 2007. https://doi.org/10.1117/12.717545

  176. Koniczek, M., Antonuk, L.E., El-Mohri, Y., Liang, A.K., Zhao, Q.: Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors. Med. Phys. 39, 3491–3503 (2017)

    Article  Google Scholar 

  177. Zha, C., Kanicki, J.: Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis. Med. Phys. 41, 091902 (2014)

    Article  Google Scholar 

  178. Que, W., Rowlands, J.A.: X-ray imaging using amorphous selenium: inherent spatial resolution. Med. Phys. 22, 365–374 (1995)

    Article  Google Scholar 

  179. Kabir, M.Z.: Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J. Appl. Phys. 104, 074506 (2008)

    Article  Google Scholar 

  180. Panneerselvam, D., Kabir, M.Z.: Evaluation of organic perovskite photoconductors for direct conversion x-ray imaging detectors. J. Mater. Sci. Mater. Electron. 28, 7083–7090 (2017)

    Article  Google Scholar 

  181. Kabir, M.Z., Kasap, S.O., Zhao, W., Rowlands, J.A.: Direct conversion x-ray sensors: sensitivity, DQE & MTF. IEE Proc. (CDS: Special Issue on Amorphous and Microcrystalline Semiconductors). 150, 258–266 (2003)

    Google Scholar 

  182. Kabir, M.Z., Rahman, M.W., Shen, W.Y.: Modelling of DQE of direct conversion x-ray imaging detectors incorporating charge carrier trapping and K-fluorescence. IET Circuits Devices Syst. 5, 222–231 (2011)

    Article  Google Scholar 

  183. Hunt, D.C., Tousignant, O., Demers, Y., Laperriere, L., Rowlands, J.A.: Imaging performance of amorphous selenium flat-panel detector for digital fluoroscopy. Proc. SPIE. 5030, 226–234 (2003). https://doi.org/10.1117/12.480131

    Article  Google Scholar 

  184. Pang, G., Zhao, W., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: geometric and effective fill factors. Med. Phys. 25, 1636–1646 (1998)

    Article  Google Scholar 

  185. Kabir, M.Z., Kasap, S.O.: Modulation transfer function of photoconductive x-ray image detectors: effects of charge carrier trapping. J. Phys. D. Appl. Phys. 36, 2352–2358 (2003)

    Article  Google Scholar 

  186. Zhao, W., Rowlands, J.A.: Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med. Phys. 24, 1819–1833 (1997)

    Article  Google Scholar 

  187. Zhao, W., Ji, W.G., Debrie, A., Rowlands, J.A.: Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Med. Phys. 30, 254–263 (2003)

    Article  Google Scholar 

  188. El-Mohri, Y., Antonuk, L.E., Zhao, Q., Wang, Y., Li, Y., Du, H., Sawant, A.: Performance of a high fill factor, indirect detection prototype flat-panel imager for mammography. Med. Phys. 34, 315–327 (2007)

    Article  Google Scholar 

  189. Rabbani, M., Shaw, R., Van Metter, R.: Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms. J. Opt. Soc. Am. A. 4, 895–901 (1987)

    Article  Google Scholar 

  190. Cunningham, I.: Applied linear systems theory. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Imaging, vol. 1. SPIE Press, Bellingham (2000) Chapter 2

    Google Scholar 

  191. Kabir, M.Z., Kasap, S.O.: DQE of photoconductive x-ray image detectors: application to a-Se. J. Phys. D. Appl. Phys. 35, 2735–2743 (2002)

    Article  Google Scholar 

  192. Mainprize, J.G., Hunt, D.C., Yaffe, M.J.: Direct conversion detectors: the effect of incomplete charge collection on detective quantum efficiency. Med. Phys. 29, 976–990 (2002)

    Article  Google Scholar 

  193. Zhao, W., Ji, W.G., Debrie, A., Rowlands, J.A.: Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Med. Phys. 30, 254–263 (2003)

    Article  Google Scholar 

  194. Cunningham, I.A.: Linear-systems modeling of parallel cascaded stochastic processes: the NPS of radiographic screens with reabsorption of characteristic X radiation. Proc. SPIE. 3336, 220–230 (1998)

    Article  Google Scholar 

  195. Arnab, S.M., Kabir, M.Z.: Impact of charge carrier trapping on amorphous selenium direct conversion avalanche x-ray detectors. J. Appl. Phys. 112, 134502 (2017)

    Article  Google Scholar 

  196. Sengupta, A., Zhao, C., Konstantinidis, A., Kanicki, J.: Cascaded systems analysis of a-Se/a-Si and a-InGaZnO TFT passive and active pixel sensors for Tomosynthesis. Phys. Med. Biol. 64, 025012 (2019)

    Article  Google Scholar 

  197. He, Z.: Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. A. 463, 250–267 (2001)

    Article  Google Scholar 

  198. Kabir, M.Z., Kasap, S.O.: Charge collection and absorption-limited x-ray sensitivity of pixelated x-ray detectors. J. Vac. Sci. Technol. A. 22, 975–980 (2004)

    Article  Google Scholar 

  199. Siddiquee, S., Kabir, M.Z.: Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors. J. Vac. Sci. Technol. A. 33, 041514 (2015)

    Article  Google Scholar 

  200. Mahmood, S.A., Kabir, M.Z., Tousignant, O., Greenspan, J.: Investigation of ghosting recovery mechanisms in selenium x-ray detector structures for mammography. IEEE Trans. Nucl. Sci. 59, 597 (2012)

    Article  Google Scholar 

  201. Kabir, M.Z., Kasap, S.O.: Photoconductors for direct conversion x-ray image detectors. In: Kasap, S.O., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, 2nd edn. Springer Academic Publishers (October 2017)

    Google Scholar 

  202. Loustauneau, V., Bissonnette, M., Cadieux, S., Hansroul, M., Masson, E., Savard, S., Polischuk, B.: Ghosting comparison for large-area selenium detectors suitable for mammography and general radiography. Proc. SPIE. 5368, 162–169 (2004). https://doi.org/10.1117/12.535812

    Article  Google Scholar 

  203. Manouchehri, F., Kabir, M.Z., Tousignant, O., Mani, H., Devabhaktuni, V.K.: Time and exposure dependent x-ray sensitivity in multilayer amorphous selenium detectors. J. Phys. D. Appl. Phys. 41, 235106 (2008)

    Article  Google Scholar 

  204. Kabir, M.Z., Chowdhury, L., DeCrescenzo, G., Tousignant, O., Kasap, S.O., Rowlands, J.A.: Effect of repeated x-ray exposure on the resolution of amorphous selenium based x-ray imagers. Med. Phys. 37, 1339–1349 (2010)

    Article  Google Scholar 

  205. Kasap, S.O., Yang, J., Simonson, B., Adeagbo, E., Walornyj, M., Belev, G., Bradley, M.P., Johanson, R.E.: Effects of x-ray irradiation on charge transport and charge collection efficiency in stabilized a-Se photoconductors. J. Appl. Phys. 127, 084502 (2020)

    Article  Google Scholar 

  206. Simonson, B., Johanson, R.E., Kasap, S.O.: Effects of high-dose x-ray irradiation on the hole lifetime in vacuum-deposited stabilized a-Se photoconductive films: implications to the quality control of a-Se used in x-ray detectors. IEEE Trans. Nucl. Sci. 67, 2445 (2020)

    Article  Google Scholar 

  207. Shrestha, S., Fischer, R., Matt, G., Feldner, P., Michel, T., Osvet, A., Levchuk, I., Merle, B., Golkar, S., Chen, H., Tedde, S.F., Schmidt, O., Hock, R., Rührig, M., Göken, M., Heiss, W., Anton, G., Brabec, C.J.: High-performance direct conversion x-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics. 11, 436–440 (2017)

    Article  Google Scholar 

  208. Hoq, A., Panneerselvam, D., Kabir, M.Z.: Sensitivity reduction mechanisms in organic perovskite x-ray detectors. J. Mater. Sci. Mater. Electron. 32, 16824 (2021)

    Article  Google Scholar 

Download references

Ackowledgment

The authors thank the Natural Sciences and Engineering Research Council (NSERC) for the financial support for their x-ray detector work. One of the authors (SK) thanks Analogic Canada (formerly Anrad Corporation) for the continued support of his x-ray photoconductor research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Kasap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasap, S., Kabir, Z. (2023). X-Ray Detectors. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics