Skip to main content

Silicon Power Devices

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Part of the book series: Springer Handbooks ((SHB))

  • 8983 Accesses

Abstract

According to a recent market survey and forecast on power devices (Fuji Keizai Co., Ltd website. https://www.fuji-keizai.co.jp/, 5 Jun 2019 (in Japanese)), the global device market in 2018 stood at about 3.0 trillion Japanese yen (about 27.3 billion USD); and of this total, SiC (silicon carbide) and GaN (gallium nitride) power devices accounted for slightly less than 41 billion Japanese yen (about 373 million USD), or as little as roughly 1.4% of the silicon power semiconductor device market. Despite numerous reports that SiC and GaN power devices exhibit far better characteristics than silicon power devices, the latter make up by far the largest segment of the power devices market. In the same forecast, by 2030, while the global power device market will grow by about 66% to 4.9 trillion Japanese yen (about 44.9 billion USD), the SiC and GaN power device market will not even make up 12% of the global market. Why would the silicon power device market maintain such a large market segment? Rapid technological advancement in silicon power devices has led to improvement in cost performance, which has dampened the motivation to adopt SiC and GaN power devices. In this chapter, the device structure and design concept of a variety of silicon power devices, and salient features and drawbacks of these devices are analyzed. In addition, it will present a brief history of their development and wrap up the state-of-the-art structures and characteristics of such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuji Keizai Co., Ltd website, https://www.fuji-keizai.co.jp/press/detail.html?cid=21055&view_type=1. 5 Jun 2019 (in Japanese)

  2. Lutz, J., Schlangenotto, H., Scheuermann, U., De Donker, R.: Semiconductor Power Devices. Springer, New York (2011)

    Book  Google Scholar 

  3. Baliga, B.J.: Modern Power Devices. Wiley, New York (1987)

    Google Scholar 

  4. Lisiak, K.P., Berger, J.: Optimization of nonplanar power MOS transistors. IEEE Trans. Electron Devices. 25(10), 1229–1234 (1978)

    Article  Google Scholar 

  5. Lidow, A., Herman, T., Collins, H.W.: Power MOSFET technology. In: IEEE IEDM Technical Digest, Washington, DC, pp. 79–83, Dec 1979

    Google Scholar 

  6. Baliga, B.J.: Fundamentals of Power Semiconductor Devices. Springer, New York (2008)

    Book  Google Scholar 

  7. Williams, R.K., Darwish, M.N., Blanchard, R.A., Siemieniec, R., Rutter, P., Kawaguchi, Y.: The trench power MOSFET: part I – history, technology, and prospects. IEEE Trans. Electron Devices. 64(3), 674–691 (2017)

    Article  Google Scholar 

  8. Lidow, A., Herman, T.: Process for manufacture of high power MOSFET with literally distributed high carrier density beneath the gate oxide. US Patent 4,593,302, 3 Jun 1986

    Google Scholar 

  9. Lorentz, L., März, M.: CoolMOS™ – a new approach towards high efficiency power supplies. In: Proceedings of PCIM Europe, Nuremberg, pp. 25–33, May 1999

    Google Scholar 

  10. Baliga, B.J.: Power semiconductor device figure of merit for high-frequency application. IEEE Electron Device Lett. 10(10), 455–457 (1989)

    Article  Google Scholar 

  11. Baliga, B.J.: Advanced Power MOSFET Concepts. Springer, New York (2010)

    Book  Google Scholar 

  12. Okuda, K., Isobe, T., Tadano, H., Iwamuro, N.: A dead-time minimized inverter by using complementary topology and its experimental evaluation of harmonic reduction. In: Proceedings of European Conference on Power Electronics and Applications, Karlsruhe, pp. 1–10, Sept 2016

    Google Scholar 

  13. Sun, S.C., Plummer, J.D.: Modeling of the on-resistance of LDMOS, VDMOS, and VMOS power transistors. IEEE Trans. Electron Devices. 27(2), 356–367 (1980)

    Article  Google Scholar 

  14. Ueda, D., Takagi, H., Kano, G.: A new vertical power MOSFET structure with extremely reduced on-resistance. IEEE Trans. Electron Devices. 32(1), 2–6 (1985)

    Article  Google Scholar 

  15. Gajda, M.A., Hodgkiss, S.W., Mounfield, L.A., Irwin, N.T., Koops, G.E.J., van Dalen, R.: Industrialisation of resurf stepped oxide technology for power transistors. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Naples, pp. 109–112, Jun 2006

    Google Scholar 

  16. Park, C., Havanur, S., Shibib, A., Terrill, K.: 60V rating split gate trench MOSFETs having best-in-class specific resistance and figure-of-merit. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Prague, pp. 387–391, Jun 2016

    Google Scholar 

  17. Kobayashi, K., Nishiguchi, T., Katoh, S., Kawano, T., Kawaguchi, Y.: 100 V class multiple stepped oxide field plate trench MOSFET (MSO-FP-MOSFET) aimed to ultimate structure realization. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Hong Kong, pp. 141–144, May 2015

    Google Scholar 

  18. Yedinak, J., Stokes, R., Probst, D., Kim, S., Challa, A., Sapp, S.: Avalanche instability in oxide charge balanced power MOSFETS. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, San Diego, pp. 156–159, May 2011

    Google Scholar 

  19. Hossain, Z., Burra, B., Sellers, J., Pratt, B., Venkatraman, P., Loechelt, G., Salih, A.: Process & design impact on BVDSS stability of a shielded gate trench power MOSFET. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Waikoloa, pp. 378–381, Jun 2014

    Google Scholar 

  20. Hossain, Z., Sabui, G., Sellers, J., Pratt, B., Salih, A.: 3-D TCAD simulation to optimize the trench termination design for higher and robust BVDSS. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Prague, pp. 391–395, Jun 2016

    Google Scholar 

  21. Deng, S., Hossain, Z., Burke, P.: Doping engineering for improved immunity against BV softness and BV shift in trench power MOSFET. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Prague, pp. 375–378, Jun 2016

    Google Scholar 

  22. Nishiwaki, T., Katoh, S., Kobayashi, K., Hokomoto, Y.: Breakdown voltage instability mechanism and improving ruggedness in trench field plate power MOSFET. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Prague, pp. 215–219, Jun 2016

    Google Scholar 

  23. Nishiwaki, T., Hara, T., Kaganoi, K., Yokota, M., Hokomoto, Y., Kawaguchi, Y.: Design criteria for shoot – through elimination in trench field plate power MOSFET. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Waikoloa, pp. 382–385, Jun 2014

    Google Scholar 

  24. Roig, J., Tong, C., Bauwens, F., Gillon, R., Massie, H., Hoggatt, C.: Internal self-damping optimization in trench power FETs for high-frequency conversion. In: Proceedings of Applied Power Electronics Conference, Fort Worth, pp. 137–142, Mar 2014

    Google Scholar 

  25. Coe, D.J.: High voltage semiconductor devices. European Patent 0053854, 16 Jun 1982

    Google Scholar 

  26. Coe, D.J.: High voltage semiconductor device. US Patent 4,754,310, 28 Jun 1988

    Google Scholar 

  27. Appels, J.A., Vaes, H.M.J.: High voltage thin layer devices (RESURF devices). In: IEEE IEDM Technical Digest, Washington, DC, pp. 228–241, Dec 1979

    Google Scholar 

  28. Fujihira, T.: Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys. 36(10), 6254–6262 (1997)

    Article  Google Scholar 

  29. Fujihira, T., Miyasaka, Y.: Simulated superior performances of semiconductor superjunction devices. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Kyoto, pp. 423–426, May 1998

    Google Scholar 

  30. Udrea, F., Deboy, G., Fujihira, T.: Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Devices. 64(3), 713–727 (2017)

    Article  Google Scholar 

  31. Deboy, G., März, M., Stengl, J.-P., Strack, H., Tihanyi, J., Weber, H.: A new generation of high voltage MOSFETs breaks the limit line of silicon. In: IEEE IEDM Technical Digest, San Francisco, pp. 683–685, Dec 1998

    Google Scholar 

  32. Saggio, M., Fagone, D., Musumeci, S.: MDmesh: innovative technology for high voltage power MOSFETs. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Toulouse, pp. 65–68, May 2000

    Google Scholar 

  33. Lorenz, L., Deboy, G., Knapp, A., Marz, M.: COOLMOS – a new milestone in high voltage power MOS. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Toronto, pp. 3–10, May 1999

    Google Scholar 

  34. Iwamoto, S., Takahashi, K., Kuribayashi, H., Wakimoto, S., Mochizuki, K., Nakazawa, H.: Above 500-V class super-junction MOSFETs fabricated by deep trench etching and epitaxial growth. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, pp. 31–34, May 2005

    Google Scholar 

  35. Saito, W., Omura, I., Aida, S., Koduki, S., Izumisawa, M., Yoshioka, H., Okumura, H., Yamaguchi, M., Ogura, T.: A 15.5mΩcm2-680V superjunction MOSFET reduced on-resistance by lateral pitch narrowing. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Naples, pp. 293–296, Jun 2006

    Google Scholar 

  36. Sakakibara, J., Noda, Y., Shibata, T., Nogami, S., Yamaoka, T., Yamaguchi, H.: 600V-class super junction MOSFET with high aspect ratio p/n columns structure. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Orlando, pp. 299–302, May 2008

    Google Scholar 

  37. Vecino, E., Stückler, F., Pippan, M. Hancock, J.: First generation of 650V super junction devices with RDS(on)*a values below 1 Ωmm2 –best efficiency that keeps the ease-of-use and enables higher power ratings and frequencies. In: Proceedings of PCIM Europe, Nuremberg, pp. 621–628, May 2013

    Google Scholar 

  38. Saito, W.: Power device trends for high-power density operation of power electronics system. Jpn. J. Appl. Phys. 53, 04EP02 (2014)

    Article  Google Scholar 

  39. Deboy, G.: Si, SiC and GaN power devices: an unbiased view on key performance indicators. In: IEEE IEDM Technical Digest, San Francisco, pp. 532–535, Dec 2016

    Google Scholar 

  40. Saito, W.: Theoretical limits of superjunction considering with charge imbalance margin. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Hong Kong, pp. 125–128, May 2015

    Google Scholar 

  41. Baliga, B.J., Walden, J.P.: Improving the reverse recovery of power MOSFET integral diodes by electron irradiation. Solid State Electron. 26, 1133–1141 (1983)

    Article  Google Scholar 

  42. Schmitt, M., Schulze, H.-J., Schlogl, A., Vosseburger, A., Willmeroth, A., Deboym G., Wachutka, G.: A comparison of electron, proton and helium ion irradiation for the optimization of the CoolMOS body diode. In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Santa Fe, pp. 229–232, Jun 2002

    Google Scholar 

  43. Shenai, K., Baliga, B.J.: Monolithically integrated power MOSFET and Schottky diode with improved reverse recovery characteristics. IEEE Trans. Electron Devices. 37(4), 1167–1169 (1990)

    Article  Google Scholar 

  44. Baliga, B.J.: The pinch rectifier: a low-forward-drop high-speed power diode. IEEE Electron Device Lett. 5(6), 194–196 (1984)

    Article  Google Scholar 

  45. Mochikawa, H., Tsuda, J., Koyama, Y.: High-efficiency inverter circuit technology for residential photovoltaic power conditioning systems. Toshiba Rev. 67(1), 26–29 (2012) in Japanese

    Google Scholar 

  46. Baliga, B.J.: Closed form analytical solutions for the breakdown voltage of planar junctions terminated with single floating field ring. Solid State Electron. 33(5), 485–488 (1990)

    Article  Google Scholar 

  47. Iwamuro, N., Laska, T.: IGBT history, state-of-the-art, and future prospects. IEEE Trans. Electron Devices. 64(3), 741–752 (2017)

    Article  Google Scholar 

  48. Iwamuro, N., Laska, T.: Correction to “IGBT history, state-of-the-art, and future prospects”. IEEE Trans. Electron Devices. 65(6), 2675 (2018)

    Article  Google Scholar 

  49. Yamagami, K., Akagiri, Y.: Transistors. Japanese Patent S471739, 19 Jun 1972

    Google Scholar 

  50. Scharf, B.W., Plummer, J.D.: A MOS-controlled triac devices. In: Proceedings of IEEE ISSCC, session XVI, Philadelphia, pp. 222–223, Feb 1978

    Google Scholar 

  51. Baliga, B.J.: Enhancement- and depletion-mode vertical-channel MOS- gated thyristors. Electron. Lett. 15(20), 645–647 (1979)

    Article  Google Scholar 

  52. Plummer, J.D.: Monolithic semiconductor switching device. US Patent 4,199,744, 22 Apr 1980

    Google Scholar 

  53. Becke, H.W., Wheatley Jr., C.F.: Power MOSFET with an anode region. US Patent 4,364,073, 14 Dec 1982

    Google Scholar 

  54. Russell, J.P., Goodman, A.M., Goodman, L.A., Neilson, J.M.: The COMFET – a new high conductance MOS-gated device. IEEE Electron Device Lett. 4(3), 63–65 (1983)

    Article  Google Scholar 

  55. Baliga, B.J., Adler, M.S., Gray, P.V., Love, R., Zommer, N.: The insulated gate rectifier(IGR): a new power switching device. In: IEEE IEDM Technical Digest, San Francisco, pp. 264–267, Dec 1982

    Google Scholar 

  56. Power-MOS IGT-insulated gate transistor data sheet, D94FQ4, R4, General Electric Company, Boston, Jun 1983

    Google Scholar 

  57. Baliga, B.J.: IGBT: the GE story. IEEE Power Electron Mag. Jun, 16–23 (2015)

    Article  Google Scholar 

  58. Chang, M.F., Pifer, G.C., Baliga, B.J., Adler, M.S., Gray, P.V.: 25 Amp, 500 Volt insulated gate transistors. In: IEEE IEDM Technical Digest, Washington, DC, pp. 83–86, Dec 1983

    Google Scholar 

  59. Smith, M.W.: Applications of insulated gate transistors. In: Proceedings of PCI, pp. 121–131, Apr 1984

    Google Scholar 

  60. Nakagawa, A., Ohashi, H., Kurata, M., Yamaguchi, Y., Watanabe, K.: Non-latch-up 1200V 75A bipolar-mode MOSFET with large ASO. In: IEEE IEDM Technical Digest, San Francisco, pp. 860–861, Dec 1984

    Google Scholar 

  61. Nakagawa, A., Yamaguchi, Y., Watanabe, K., Ohashi, H.: Safe operating area for 1200-V non-latch-up bipolar-mode MOSFETs. IEEE Trans. Electron Devices. 34(2), 351–355 (1987)

    Article  Google Scholar 

  62. Goodman, A.M., Russell, J.P., Goodman, L.A., Nuese, C.J., Neilson, J.M.: Improved COMFETs with fast switching speed and high-current capability. In: IEEE IEDM Technical, Digest, Washington, DC, pp. 79–82, Dec 1983

    Google Scholar 

  63. Miller, G., Sack, J.: A new concept for a non punch through IGBT with MOSFET like switching characteristics. In: IEEE PESC Record, vol. 1, Wisconsin, pp. 21–25, Jun 1989

    Google Scholar 

  64. Baliga, B.J.: Switching speed enhancement in insulated gate transistors by electron irradiation. IEEE Trans. Electron Devices. 31(12), 1790–1795 (1984)

    Article  Google Scholar 

  65. Yilmaz, H.: Cell geometry effect on IGT latch-up. IEEE Electron Device Lett. EDL-6(8), 419–421 (1985)

    Article  Google Scholar 

  66. Otsuki, M., Onozawa, Y., Kanemaru, H., Seki, Y., Matsumoto, T.: A study on the short-circuit capability of field-stop IGBTs. IEEE Trans. Electron Devices. 50(6), 1525–1531 (2003)

    Article  Google Scholar 

  67. Harada, M., Minato, T., Takahashi, H., Nishimura, H., Inoue, K., Takata, I.: 600V trench IGBT in comparison with planar IGBT. In: Proceedings of International Symposium on Power Semiconductors and ICs, Davos, pp. 411–416, May 1994

    Google Scholar 

  68. Otsuki, M., Momota, S., Nishiura, A., Sakurai, K.: The 3rd generation IGBT toward a limitation of IGBT performance. In: Proceedings of International Symposium on Power Semiconductors and ICs, Monterey, pp. 24–29, May 1993

    Google Scholar 

  69. Kitagawa, M., Omura, I., Hasegawa, S., Inoue, T., Nakagawa, A.: A 4500V injection enhanced insulated gate bipolar transistor (IEGT). In: IEEE IEDM Technical Digest, Washington, DC, pp. 679–682, Dec 1993

    Google Scholar 

  70. Takahashi, H., Haruguchi, E., Hagino, H., Yamada, T.: Carrier stored trench- gate bipolar transistor (CSTBT) – a novel power device for high voltage application. In: Proceedings of International Symposium on Power Semiconductors and ICs, Maui, pp. 349–352, May 1996

    Google Scholar 

  71. Mori, M., Uchino, Y., Sakano, J., Kobayashi, H.: A novel high-conductivity IGBT (HiGT) with a short circuit capability. In: Proceedings of International Symposium on Power Semiconductors and ICs, Kyoto, pp. 429–432, Jun 1998

    Google Scholar 

  72. Laska, T., Pfirsch, F., Hirler, F., Niedermeyr, J., Schaffer, C., Schmidt, T.: 1200V-trench-IGBT study with square short circuit SOA. In: Proceedings of International Symposium on Power Semiconductors and ICs, Kyoto, pp. 433–436, Jun 1998

    Google Scholar 

  73. Matsudai, T., Nakagawa, A.: Potential of 600V trench gate IGBT having lower on-state voltage drop than diodes. Toshiba Rev. 54(11), 28–31 (1999) in Japanese

    Google Scholar 

  74. Matsudai, T., Kinoshita, K., Nakagawa, A.: New 600V trench gate punch-through IGBT concept with very thin wafer and low efficiency p-emitter, having an on-state voltage drop lower than diode. In: Proceedings of IPEC-Tokyo, Tokyo, pp. 292–296, Apr 2000

    Google Scholar 

  75. Laska, T., Münzer, M., Pfirsch, F., Schaeffer, C., Schmidt, T.: The field stop IGBT (FS IGBT). A new power device concept with a great improvement potential. In: Proceedings of International Symposium on Power Semiconductors and ICs, Toulouse, pp. 355–358, May 2000

    Google Scholar 

  76. Laska, T.: Progress in Si IGBT technology – as an ongoing competition with WBG power devices. In: IEEE IEDM Technical Digest, San Francisco, pp. 262–265, Dec 2019

    Google Scholar 

  77. Nishimura, Y., Mochizuki, E., Takahashi, Y.: Development of a next generation IGBT module using a new insulating substrate. Fuji Electric Rev. 51(2), 52–56 (2005)

    Google Scholar 

  78. Majumdar, G., Sugimoto, H., Kimata, M., Iida, T., Iwamoto, H., Nakajima, T., Matsui, H.: Super mini type integrated inverter using intelligent power and control devices. In: Proceedings of International Symposium on Power Semiconductors (ICs), Tokyo, pp. 144–149, Apr 1990

    Google Scholar 

  79. Nomura, N.: Inverter arm construction by complementary power MOSFETs. IEE Jpn. Trans. 107-D, 279 (1987)

    Google Scholar 

  80. Chang, M.F., Pifer, G.C., Yilmaz, H., Dyer, R.F., Baliga, B.J., Chow, T.P., Adler, M.S.: Comparison of N and P channel IGTs. In: IEEE IEDM Technical Digest, pp. 278–281, Dec 1984

    Google Scholar 

  81. Ueno, K., Hoshi, Y., Iwamuro, N., Kumagai, N., Hashimoto, O.: Improvement of the safe operating area for p-channel insulated gate bipolar transistors (IGBTs). Jpn. J. Appl. Phys. 30(6A), L966 (1991)

    Article  Google Scholar 

  82. Iwamuro, N., Okamoto, A., Tagami, S., Motoyama, H.: Numerical analysis of short-circuit safe operating area for p-channel and n-channel IGBT’s. IEEE Trans. Electron Devices. 38(2), 303–309 (1991)

    Article  Google Scholar 

  83. Sze, S.M.: Physics of Semiconductor Devices, p. 47. John Willey and Sons, New York (1981)

    Google Scholar 

  84. Omura, I., Ogura, T., Sugiyama, K., Ohashi, H.: Carrier injection enhancement effect of high voltage MOS devices –Device physics and design concept. In: Proceedings of International Symposium on Power Semiconductors and ICs, pp. 217–220, May 1997

    Google Scholar 

  85. Sumitomo, M., Asai, J., Sakane, H., Arakawa, K., Higuchi, Y., Matsui, M.: Low loss IGBT with partially narrow mesa structure (PNM-IGBT). In: Proceedings of International Symposium on Power Semiconductors and ICs, Bruges, pp. 17–20, Jun 2012

    Google Scholar 

  86. Wolter, F., Rösner, W., Cotorogea, M., Geinzer, T., Seider-Schmidt, M.: Multi-dimensional trade-off considerations of the 750V micro pattern trench IGBT for electric drive train applications. In: Proceedings of International Symposium on Power Semiconductors and ICs, Hong Kong, pp. 105–108, May 2015

    Google Scholar 

  87. Niedernostheide, F.J., Schulze, H.J., Laska, T.: IGBTs: recent developments and future perspectives. In: Proceedings of ISPS Conference, pp. 2068–2073, Sept 2016

    Google Scholar 

  88. Dewar, S., Linder, S., von Arx, C., Mukhitinov, A., Debled, G.: Soft punch through (SPT) – setting new standards in 1200V IGBT. In: Proceedings of PCIM Europe, Nuremberg, Jun 2000, pp. 593.

    Google Scholar 

  89. Nakagawa, A., Ohashi, H.: 600-1200V bipolar mode MOSFETs with high current capability. IEEE Electron Device Lett. 6(7), 378–380 (1985)

    Article  Google Scholar 

  90. Takei, M., Harada, Y., Ueno, K.: 600V-IGBT with reverse blocking capability. In: Proceedings of International Symposium on Power Semiconductors and ICs, Osaka, pp. 413–416, May 2001

    Google Scholar 

  91. Chow, T.P., Baliga, B.J., Chang, H.R., Gray, P.V., Hennessy, W., Logan, C.E.: P-channel, vertical insulated gate bipolar transistors with collector short. In: IEEE IEDM Technical Digest, Washington, DC, pp. 670–673, Dec 1987

    Google Scholar 

  92. Ueda, D., Kitamura, K., Takagi, H., Kano, G.: A new injection suppression structure for conductivity modulated power MOS-FETs. In: Proceedings of International Conference on Solid State Devices and Materials, Tokyo, Aug pp. 97–100, 1986

    Google Scholar 

  93. Takahashi, H., Yamamoto, A., Aono, S., Minato, T.: 1200V reverse conducting IGBT. In: Proceedings of International Symposium on Power Semiconductors and ICs, Kitakyushu, pp. 133–136, May 2004

    Google Scholar 

  94. Hellmund, O., Lorenz, L., Rüthing, H.: 1200V reverse conducting IGBTs for soft-switching applications. China Power Electron. J. 5, 20–22 (2005)

    Google Scholar 

  95. Satoh, K., Iwagami, T., Kawafuji, H., Shirakawa, S., Honsberg, M., Thal, E.: A new 3A/600V transfer mold IPM with RC (reverse conducting) –IGBT. In: Proceedings of PCIM Europe, Nuremberg, pp. 73–78, May 2006

    Google Scholar 

  96. Rüthing, H., Hille, F., Niedernostheide, F.J., Schulze, H.J., Brunner, B.: 600 V reverse conducting (RC-) IGBT for drives applications in ultra-thin wafer technology. In: Proceedings of International Symposium on Power Semiconductors and ICs, Jeju, pp. 89–92, May 2007

    Google Scholar 

  97. Yamano, A., Takasaki, A., Ichikawa, H.: 7th-generation “X series” RC-IGBT module line-up for industrial applications. Fuji Electric Rev. 63(4), 223–227 (2017)

    Google Scholar 

  98. Rahimo, M., Schlapbach, U., Kopta, A., Vobecky, J., Schneider, D., Baschnagel, A.: A high current 3300V module employing reverse conducting IGBTs setting a new benchmark in output power capability. In: Proceedings of International Symposium on Power Semiconductors and ICs, Orlando, pp. 68–71, May 2008

    Google Scholar 

  99. Rahimo, M., Kopta, A., Schlapbach, U., Vobecky, J., Schnell, R., Klaka, S.: The Bi-mode insulated gate transistor (BIGT) a potential technology for higher power applications. In: Proceedings of International Symposium on Power Semiconductors and ICs, Barcelona, pp. 283–286, Jun 2009

    Google Scholar 

  100. Guth, K., Hille, H., Umbach, F., Siepe, D., Görlich, J., Torwesten, H., Roth, R.: New assembly and interconnects beyond sintering methods. In: Proceedings of PCIM Europe, Nuremberg, pp. 232–237, May 2010

    Google Scholar 

  101. Yoshida, K., Yoshiwatari, S., Kawabata, J.: 7th-generation “X series” IGBT module “dual XT”. Fuji Electric Rev. 62(4), 236–240 (2016)

    Google Scholar 

  102. Takahashi, M., Yoshida, S., Tamenori, A., Kobayashi, Y., Ikawa, O., Hofmann, D.: Extended power rating of 1200V IGBT module with 7G RCIGBT chip technologies. In: Proceedings of PCIM Europe, Nuremberg, pp. 438–444, May 2016

    Google Scholar 

  103. Masaomi, M., Tabata, M., Hieda,T., Muraoka, H., Radke, T.: 7th generation IGBT module for industrial applications. In: Proceedings of PCIM Europe, Nuremberg, pp. 34–38, May 2014

    Google Scholar 

  104. Niedernostheide, F.J., Schulze, H.J., Laska, T.: IGBTs: recent developments and future perspectives. In: ISPS Conference, Sept 2016

    Google Scholar 

  105. Nakagawa, A.: Theoretical investigation of silicon limit characteristics of IGBTs. In: Proceedings of International Symposium on Power Semiconductors and ICs, Naples, pp. 5–8, May 2006

    Google Scholar 

  106. Eikyu, K., Sakai, A., Matsuura, H., Nakazawa, Y., Akiyama, Y.: On the scaling limit of the Si-IGBTs with very narrow mesa structure. In: Proceedings of International Symposium on Power Semiconductors and ICs, Prague, pp. 211–214, Jun 2016

    Google Scholar 

  107. Feng, H., Yang, W., Onozawa, Y., Yoshimura, T., Tamenori, A., Sin, J.K.O.: A 1200 V-class Fin P-body IGBT with ultra-narrow-mesas for low conduction loss. In: Proceedings of International Symposium on Power Semiconductors and ICs, Prague, pp. 203–206, Jun 2016

    Google Scholar 

  108. Schulze, H.J., Öfner, H., Niedernostheide, F.-J., Laven, J.G., Felsl, H.P., Voss, S., Schwagmann, A., Jelinek, M., Ganagona, N., Susiti, A., Wübben, T., Schustereder, W., Breymesser, A., Stadtmüller, M., Schulz, A., Kurz, T., Lükermann, F.: Use of 300 mm magnetic Czochralski Wafers for the fabrication of IGBTs. In: Proceedings of International Symposium on Power Semiconductors and ICs, Prague, pp. 355–358, Jun 2016

    Google Scholar 

  109. Otsuki, M., Watanabe, M., Nishiura, A.: Trends and opportunities in intelligent power modules (IPM). In: Proceedings of International Symposium on Power Semiconductors and ICs, Hong Kong, pp. 317–320, May 2015

    Google Scholar 

  110. Werber, D., Schütze, T., Hunger, T., Lassmann, M., Stemmer, B., Pfirsch, F., Wissen, M., Komarnitskyy, V.: A 1000A 6.5kV power module enabled by reverse-conducting trench-IGBT-technology. In: Proceedings of PCIM Europe, Nuremberg, pp. 351–358, May 2015

    Google Scholar 

  111. Rahimo, M., Andenna, M., Storasta, L., Corvasce, C., Kopta, A.: Demonstration of an enhanced trench Bimode insulated gate transistor ET-BIGT. In: Proceedings of International Symposium on Power Semiconductors and ICs, Prague, pp. 151–154, Jun 2016

    Google Scholar 

  112. Laven, J.G., Baburske, R., Philippou, A., Itani, H., Dainese, M.: RCDC-IGBT study for low-voltage applications. In: Proceedings of International Symposium on Power Semiconductors and ICs, Prague, pp. 347–350, Jun 2016

    Google Scholar 

  113. Schlapbach, U., Rahimo, M., von Arx, C., Mukhitdinov, A., Linder, S.: 1200V IGBTs operating at 200°C? An investigation on the potentials and the design constraints. In: Proceedings of International Symposium on Power Semiconductors and ICs, Jeju, pp. 9–12, May 2007

    Google Scholar 

  114. Laska, T., Münzer, M., Rupp, R., Rüthing, H.: Review of power semiconductor switches for hybrid and fuel cell automotive applications. In: Proceedings of Automotive Power Electronics, Paris, Jun 2006

    Google Scholar 

  115. Seldrum, T., Vanlathem, E., Delsuc, V., Enami, H.: New silicone gel enabling high temperature stability for next generation of power modules. In: Proceedings of PCIM Europe, Nuremberg, pp. 1017–1020, May 2016

    Google Scholar 

  116. Amro, R., Lutz, J., Rudzki, J., Thoben, M., Lindemann, A.: Double-sided low-temperature joining technique for power cycling capability at high temperature. In: European Conference on Power Electronics and Application, Dresden, Sept 2005

    Google Scholar 

  117. Scheuermann, U., Beckedahl, P.: The road to the next generation power module – 100% solder free design. In: Proceedings of 5th International Conference on Integration of Power Electronic Systems, Nuremberg, Mar 2008

    Google Scholar 

  118. Beckedahl, P., Hermann, M., Kind, M., Knebl, M., Nascimento, J., Wintrich, A.: Performance comparison of traditional packaging technologies to a novel bond wireless all sintered power module. In: Proceedings of PCIM Europe, Nuremberg, pp. 247–251, May 2011

    Google Scholar 

  119. Hille, F., Umbach, F., Raker, T., Roth, R.: Failure mechanism and improvement potential of IGBT’s short circuit operation. In: Proceedings of International Symposium on Power Semiconductors and ICs, Hiroshima, pp. 33–37, Jun 2010

    Google Scholar 

  120. Moll, J.L., Taneubaum, M., Goldey, J.M., Holonyak, N.: P-N-P-N transistor switches. Proc. IRE. 44(9), 1174–1182 (1956)

    Article  Google Scholar 

  121. Gentry, F.E., Scace, R.I., Flowers, J.K.: Bidirectional triode p-n-p-n switches. Proc. IEEE. 53(4), 355–369 (1965)

    Article  Google Scholar 

  122. Temple, V.A.K.: MOS controlled thyristors (MCT's). In: IEEE IEDM Technical Digest, San Francisco, pp. 282–285, Dec 1984

    Google Scholar 

  123. Stoisiek, M., Stack, H.: The MOS-GTO –a turn-off thyristor with MOS-controlled shorts. In: IEEE IEDM Technical Digest, Washington, DC, pp. 158–161, Dec 1985

    Google Scholar 

  124. Iwamuro, N., Baliga, B.J.: Reverse biased safe operating area of emitter switched thyristors. IEEE Trans. Electron Devices. 43(2), 352–357 (1996)

    Article  Google Scholar 

  125. Nandakumer, N., Baliga, B.J., Shekar, M.S., Tandon, S., Reisman, A.: The base resistance controlled thyristor (BRT). In: Proceedings of International Symposium on Power Semiconductor Devices and ICs, Baltimore, pp. 138–141, May 1991

    Google Scholar 

  126. Shekar, M.S., Baliga, B.J., Nandarkumar, M., Tandon, S., Reisman, A.: High –voltage current saturation in emitter switched thyristors. IEEE Electron Device Lett. 12(7), 387–389 (1991)

    Article  Google Scholar 

  127. Baliga, B.J.: The MOS-gated emitter switched thyristor. IEEE Electron Device Lett. 11(2), 75–77 (1990)

    Article  Google Scholar 

  128. Iwamuro, N., Shekar, M.S., Baliga, B.J.: Forward biased safe operating area of emitter switched thyristors. IEEE Trans. Electron Devices. 42(2), 334–339 (1995)

    Article  Google Scholar 

  129. Iwamuro, N., Iwaana, T., Harada, Y., Onozawa, Y., Seki, Y.: A new concept for high voltage MCCT with no J-FET resistance by using a very thin wafer. In: IEEE IEDM Technical Digest, Washington, DC, pp. 351–354, Dec 1997

    Google Scholar 

  130. Baliga, B.J.: Analysis of junction-barrier-controlled Schottky (JBS) rectifier characteristics. Solid State Electron. 28(11), 1089–1093 (1985)

    Article  Google Scholar 

  131. Naito, M., Matsuzaki, H., Ogawa, T.: High current characteristics of asymmetrical P-i-N diodes having low forward voltage drops. IEEE Trans. Electron Devices. 23(8), 945–949 (1976)

    Article  Google Scholar 

  132. Shimizu, Y., Nairo, M., Murakami, S., Terasawa, Y.: High speed low-loss P-N diode having a channel structure. IEEE Trans. Electron Devices. 31(9), 1314–1319 (1984)

    Article  Google Scholar 

  133. Baliga, B.J., Chang, H.R.: The merged pin Schottky (MPS) rectifier: high-voltage, high-speed power diode. In: IEEE IEDM Technical Digest, Washington, DC, pp. 658–661, Dec 1987

    Google Scholar 

  134. Tu, H.S., Baliga, B.J.: Controlling the characteristics of the MPS rectifier by variation of area of Schottky region. IEEE Trans. Electron Devices. 40(7), 1307–1315 (1993)

    Article  Google Scholar 

  135. Hau, W.C.-W., Udrea, F., Lin, P.-L., Lin, Y.-Y., Chen, M.: Innovative designs enable 300-V TMBS with ultra-low on-state voltage and fast switching speed. In: Proceedings of International Symposium on Power Semiconductors and ICs, San Diego, pp. 80–83, May 2011

    Google Scholar 

  136. Hau, W.C.-W., Udrea, F., Chang, W., Chen, M.: A fast 600-V tandem pin Schottky (TPS) rectifier with ultra-low on-state voltage. In: Proceedings of International Symposium on Power Semiconductors and ICs, Bruges, pp. 377–380, Jun 2012

    Google Scholar 

  137. Kameyama, S., Hara, M., Kubo, T., Hirahara, F.: Study of electron and hole traps in freewheeling diodes for low loss and low reverse recovery surge voltage. In: Proceedings of International Symposium on Power Semiconductors and ICs, Bruges, pp. 369–372, Jun 2012

    Google Scholar 

  138. Matsudai, T., Ogura, T., Oshino, Y., Naijo, T., Kobayashi, T., Nakamura, K.: 1200V SC (Schottky controlled injection)-diode, an advanced fast recovery concept with high carrier lifetime. In: Proceedings of International Symposium on Power Semiconductors and ICs, Kanazawa, pp. 339–342, Jun 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Iwamuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwamuro, N. (2023). Silicon Power Devices. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics