Skip to main content

Nano-enabled Consumer Products: Inventories, Release, and Exposures

  • Chapter
  • First Online:
Nanotoxicology in Humans and the Environment

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 377 Accesses

Abstract

Given the challenges of simply defining the boundaries of what are or are not “nano” products, the concept of nano-specific consumer product inventories has arguably been one of the most important results from more than a decade of international investment in nanotechnology risk-related research, tools, and resources. Two inventories are considered especially important and are widely cited in peer-reviewed publications, grant applications, conferences and symposia, and the media. Those inventories are: (1) the Nanotechnology Consumer Products Inventory (CPI) developed in 2005 by the Woodrow Wilson International Center for Scholars’ (WWICS) Project on Emerging Nanotechnologies (PEN) and (2) the Danish Nanodatabase established in 2012 by the Technical University of Denmark’s Department of Environmental Engineering (DTU Environment). These inventories were intended to provide relevant information about consumer products that may contain engineered nanomaterials (ENMs) and thereby, based on precautionary principle and the potential for the release of ENMs (either intentionally or unintentionally), may pose unique risks to end users and environmental systems. This chapter informs others in this book by looking specifically at what we have learned through the process of curating inventories of nano-enabled products, particularly in the US and Europe. While additional work and resources are needed to improve these inventories, some initial trends have become evident through recent assessments of the CPI and Nanodatabase published by Vance et al. (Beilstein J Nanotechnol 6:1769–1780, 2015) and Hansen et al. (Environ Sci Nano 3:169–180, 2016), respectively. Their findings, which we must be careful to interpret as snapshots in time and subject to change as new products emerge and consumer trends vary, may provide important insights into critical questions such as (1) which products are most likely to contain nanoscale materials, (2) which nanomaterials are encountered most often in those products, (3) how likely nanomaterials are to be released from certain products and at what rates, (4) what analytical approaches and studies should be prioritized to help protect human health and the environment, and various others. Carefully and regularly curated inventories of nano-enabled consumer products may help researchers determine which product usage scenarios are likely to result in the release of ENMs and ENM/composite materials.

General correspondence regarding the chapter and specific correspondence regarding the Nanotechnology Consumer Products Inventory should be directed to MS Hull

Correspondence regarding the Danish Nanodatabase should be directed to SF Hansen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addo Ntim S, Thomas TA, Begley TH, Noonan GO. Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32:1003–11.

    Article  CAS  Google Scholar 

  • Ahmadpoor M, Jones B. The dual frontier: patented inventions and prior scientific advance. Science. 2017;357(6351):583–7.

    Article  CAS  Google Scholar 

  • ANEC/BEUC. List of nanotech. 2015. http://www.beuc.eu/publications/2013-00141-01-e.xls. Accessed 13 Aug 2015.

  • Aschberger K, Rauscher H, Crutzen H, Rasmussen K, Christensen FM, Sokull-Klüttgen B, Stamm H. Considerations on information needs for nanomaterials in consumer products. European Commission Joint Research Centre Institute for Health and Consumer Protection. CPI 2015. Consumer Product Inventory. Project of Emerging Nanotechnologies. 2014. Available: http://www.nanotechproject.org/cpi/. Accessed 13 Aug 2015.

  • Baun A, Hartmann NB, Grieger KD, Hansen SF. Setting the limits for engineered nanoparticles in European surface waters. J Environ Monit. 2009;11:1774–81.

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42:4133–9.

    Article  CAS  Google Scholar 

  • BIPRO and RPA. Study to assess the impact of possible legislation to increase transparency on nanomaterials on the market. Brussels: DG Enterprise and Industry, European Commission; 2014.

    Google Scholar 

  • Boldrin A, Hansen SF, Baun A, Hartmann N, Astrup TF. Environmental exposure assessment framework for nanoparticles in solid waste. J Nanopart Res. 2014;16:2394. https://doi.org/10.1007/s11051-014-2394-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolea E, Castillo JR. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal Bioanal Chem. 2011;401:2723–32.

    Article  CAS  Google Scholar 

  • Bolyard SC, Reinhart DR, Santra S. Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol. 2013;47(15):8114–22.

    CAS  PubMed  Google Scholar 

  • BUND. Nanoproduktdatenbank. 2015. Available: http://www.bund.net/nc/themen_und_projekte/nanotechnologie/nanoproduktdatenbank/produktsuche/. Accessed 13 Aug 2015.

  • BUND. BUND veröffentlicht Datenbank mit über 200 Nano-Produkten. 2010. Available: https://www.bund.net/nc/presse/pressemitteilungen/detail/zurueck/pressemitteilungen/artikel/bundveroeffentlichtdatenbank-mit-ueber-200-nano-produkten/. Accessed: 30 Oct 2015.

  • Butler MK, Prow TW, Guo YN, Lin LL, Webb RI, Martin DJ. High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine [Internet]. 2012;7:541–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22394188

  • Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ, Liu Y, Zhao Y, Wang H. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small. 2013;9:1765–74.

    Article  CAS  Google Scholar 

  • Chemical Watch 2014a. Belgium to implement nanomaterials register in 2016. Chemical Watch 12 February 2014.

    Google Scholar 

  • CSF Nanotechnology in Food. Center for Food Safety. 2015. Available: http://salsa3.salsalabs.com/o/1881/p/salsa/web/common/public/content?content_item_KEY=14112. Accessed 30 Oct 2015.

  • Dale AL, Lowry GV, Casman EA. Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol. 2013;47(22):12920–8.

    Article  CAS  Google Scholar 

  • Dan Y, Shi H, Stephan C, Liang X. Rapid analysis of titanium dioxide nanoparticles in sunscreens using single particle inductively coupled plasma-mass spectrometry. Microchem J. 2015;122:119–26.

    Article  CAS  Google Scholar 

  • De La Calle I, Menta M, Séby F. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review Spectrochimica Acta Part B. Spectrochim Acta Part B [Internet]. 2016 [cited 2017 Jul 19]; 125:66–96. Available from: https://doi.org/10.1016/j.sab.2016.09.007

  • ECHA. Silicon dioxide (as a nanomaterial formed by aggregates and agglomerates). 2016a. Available: http://dissemination.echa.europa.eu/Biocides/factsheet?id=1449-18. Accessed 14 Mar 2016 (Accessed 02 Dec 2016).

  • ECHA. Silver adsorbed on silicon. 2016b. http://dissemination.echa.europa.eu/Biocides/factsheet?id=1448-09. Accessed 02 Dec 2016.

  • Echegoyen Y, Nerín C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 2013;62:16–22.

    Article  CAS  Google Scholar 

  • European Commission. Commission Staff Working Paper Types and uses of nanomaterials, including safety aspects accompanying the Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Review on Nanomaterials SWD(2012) 288 final. Brussels: European Commission; 2012.

    Google Scholar 

  • European Commission. Catalogue of nanomaterials used in cosmetic products placed on the EU market Version 1 (31.12.2016). 2017. Available: http://ec.europa.eu/docsroom/documents/24521. 05 Aug 2017.

  • Fiorentino B, Golanski L, Guiot A, Damlencourt JF, Boutry D. Influence of paints formulations on nanoparticles release during their life cycle. J Nanopart Res. 2015;17

    Google Scholar 

  • Froggett SJ, Clancy SF, Boverhof DR, Canady RA. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol. 2014;11:17. https://doi.org/10.1186/1743-8977-11-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganzleben C, Hansen SF. Environmental exposure to nanomaterials – data scoping study. Service contract no.07.0307/2011/610874/ETU/D.3. Brussels: Milieu; 2012a.

    Google Scholar 

  • Ganzleben C, Hansen SF. Nanomaterials as priority substances under the water framework directive. Eur J Law Technol. 2012b;2:38–45.

    Google Scholar 

  • Gottschalk F, Nowack B, Lassen C, Kjølholt J, Christensen F. Nanomaterials in the Danish environment. Modelling exposure of the Danish environment to selected nanomaterials. Environmental project no. 1639, 2015. Copenhagen: Danish Environmental Protection Agency; 2015.

    Google Scholar 

  • Hagendorfer H, Lorenz C, Kaegi R, Sinnet B, Gehrig R, Goetz NV, Scheringer M, Ludwig C, Ulrich A. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res [Internet]. 2010 [cited 2016 Jul 13];12:2481–94. Available from: http://link.springer.com/10.1007/s11051-009-9816-6

  • Hansen SF, Brinch A. The biocides market for nano actives. Chem Watch. 2014;67:8–9.

    Google Scholar 

  • Hansen SF, Heggelund L, Mackevica A. Nanoproducts: what is actually available to European consumers? Environ Sci Nano. 2016;3:169–80.

    Article  Google Scholar 

  • Hansen SF, Michelson E, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology. 2008a;17:438–447.

    Google Scholar 

  • Hartmann NB, Skjolding LM, Hansen SF, Kjølholt J, Gottschalck F, Baun A. Environmental fate and behaviour of nanomaterials new knowledge on important transformation processes environmental project no. 1594, 2014. Copenhagen: The Danish Environmental Protection Agency; 2014.

    Google Scholar 

  • Hauri JF, Niece BK. Leaching of silver from silver-impregnated food storage containers. J Chem Educ. 2011;88:1407–9.

    Article  CAS  Google Scholar 

  • Healy N. Why nano education? J Nano Educ. 2009;1(1):6–7.

    Article  Google Scholar 

  • Heggelund L, Hansen SF, Astrup TF, Boldrin A. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom – abundance, distribution and management. Waste Manag. 2016;56:584–92.

    Article  CAS  Google Scholar 

  • Huang Y, Chen S, Bing X, Gao C, Wang T, Yuan B. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci [Internet]. 2011 [cited 2016 Jul 21];24:291–7. Available from: http://doi.wiley.com/10.1002/pts.938

  • Jokar M, Pedersen GA, Loeschner K. Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Addit Contam Part A. 2017;34(3):434–50.

    Article  CAS  Google Scholar 

  • Koivisto AJ, Jensen ACØ, Kling KI, Nørgaard A, Brinch A, Christensen F, Jensen KA. Quantitative material releases from products and articles containing manufactured nanomaterials: towards a release library. NanoImpact. 2017;5:119–32.

    Article  Google Scholar 

  • Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol [Internet]. 2010 [cited 2016 Sep 4];7:8. Available from: http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-7-8

  • Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta. 2016;904:10–32.

    Article  CAS  Google Scholar 

  • Larsen PB, Christensen F, Keld C, Jensen A, Brinch A, Mikkelsen SH. Exposure assessment of nanomaterials in consumer products. Environmental project no. 1636. Copenhagen: Danish Environmental Protection Agency; 2015.

    Google Scholar 

  • Lewicka ZA, Benedetto AF, Benoit DN, Yu WW, Fortner JD, Colvin VL. The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J Nanopart Res [Internet]. 2011 [cited 2016 Jul 13];13:3607–17. Available from: http://link.springer.com/10.1007/s11051-011-0438-4

  • Li Z, Tang H, Yuan W, Song W, Niu Y, Yan L, Yu M, Dai M, Feng S, Wang M, et al. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach. Nanotechnology. 2014;25

    Google Scholar 

  • Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A, Scheringer M, Hungerbühler K. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanopart Res [Internet]. 2011 [cited 2016 Jul 13];13:3377–91. Available from: http://link.springer.com/10.1007/s11051-011-0256-8

  • Losert S, Hess A, Ilari G, von Goetz N, Hungerbuehler K. Online characterization of nano-aerosols released by commercial spray products using SMPS–ICPMS coupling. J Nanopart Res [Internet]. 2015;17:293. Available from: http://link.springer.com/10.1007/s11051-015-3078-2

  • Mackevica, A. Release of nanomaterials from consumer products and implications for consumer exposure assessment. PhD Thesis October 2016. Kgs. Lyngby: DTU Environment Department of Environmental Engineering Technical University of Denmark; 2016.

    Google Scholar 

  • Mackevica A, Hansen SF. Release of nanomaterials from solid nanocomposites and consumer exposure assessment – a forward-looking review. Nanotoxicology. 2016;10

    Google Scholar 

  • Mackevica A, Revilla P, Brinch A, Hansen SF. Current uses of nanomaterials in biocidal products and treated articles in the EU. Environ Sci Nano. 2016a;3(5):1195–205.

    Article  CAS  Google Scholar 

  • Mackevica A, Besora PR, Brinch A, Hansen SF. Current uses of nanomaterials in biocidal products and treated articles in the EU. Environ Sci Nano. 2016b;3:1195–205.

    Article  CAS  Google Scholar 

  • Mackevica A, Olsson ME, Hansen SF. The release of silver nanoparticles from commercial toothbrushes. J Hazard Mater. 2016c;322(Part A):270–5.

    PubMed  Google Scholar 

  • Mackevica A, Olsson ME, Hansen SF. Silver nanoparticle release from commercially available plastic food containers into food simulants. J Nanopart Res. 2016d;18(1):1–11.

    Article  CAS  Google Scholar 

  • Mackevica A, Olsson ME, Mines PD, Heggelund LR, Hansen SF. Dermal transfer quantification of nanoparticles from nano-enabled surfaces. NanoImpact. 2018a;11:109–18.

    Article  Google Scholar 

  • Mackevica A, Olsson ME, Hansen SF. Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS. J Nanopart Res. 2018b;20:6.

    Article  Google Scholar 

  • Michelson ES. Globalization at the nano frontier: the future of nanotechnology policy in the United States, China, and India. Technol Soc. 2008;30:405–10.

    Article  Google Scholar 

  • Nanowerk. Nanomaterials database. 2016. http://www.nanowerk.com/nanomaterial-database.php. Accessed 02 Dec 2016.

  • Nischwitz V, Goenaga-Infante H. Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. J Anal At Spectrom [Internet]. 2012 [cited 2016 Jul 13];27:1084. Available from: http://xlink.rsc.org/?DOI=c2ja10387g

  • Nischwitz V, Goenaga-Infante H, Bolea E, Castillo JR, Scherrers R, Ludwig C, Ulrich A, Rose J, Bottero J-Y, Zazueta C, et al.. Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. J Anal At Spectrom [Internet]. 2012 [cited 2017 Aug 30];27:1084. Available from: http://xlink.rsc.org/?DOI=c2ja10387g

  • Nowack B. Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact. 2017;8:38–47.

    Article  Google Scholar 

  • OECD. Nanomaterials in waste streams: current knowledge on risks and impacts. Paris: Organisation for Economic Co-operation and Development; 2016. Available online: http://www.oecd-ilibrary.org/environment/nanomaterials-in-waste-streams_9789264249752-en. Last accessed 23 May 2016.

  • Oziel C. ClientEarth files complaint over EU cosmetics nano inventory. Chem Watch. 2017. Available: https://chemicalwatch.com/58020/clientearth-files-complaint-over-eu-cosmetics-nano-inventory. Accessed 07 Aug 2017.

  • Paun, C.. EU nanomaterials register looks unlikely not a good way to provide information to consumers. 2015. EU Commission says. 11 December 2014. https://chemicalwatch.com/22241/eu-nanomaterials-register-looks-unlikely?q=nano%2C%20unlikely. Accessed 30 Oct 2015.

  • PEN Updates. Project of emerging nanotechnologies. 2015. Available: http://www.nanotechproject.org/cpi/about/updates/. Accessed 30 Oct 2015.

  • Peters RJ, Van Bemmel G, Herrera-Rivera Z, Helsper HPFG, Marvin HJP, Weigel S, Tromp PC, Oomen AG, Rietveld AG, Bouwmeester H. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J Agric Food Chem [Internet]. 2014 [cited 2016 May 19];62:6285–93. Available from: http://pubs.acs.org/doi/abs/10.1021/jf5011885

  • Paun C. Belgium notifies EU Commission of nano register plan. Chemical Watch 10 July 2013. 2013a. Available: https://chemicalwatch-com.globalproxy.cvt.dk/15632/belgium-notifies-eu-commission-ofnanoregister-plan?q=Belgium%20notifies%20EU%20Commission%20of%20nano%20register%20plan. Accessed 30 Oct 2015.

  • Paun C. French nanomaterials register receives 3,400 declarations. Chemical Watch 12 December 2013. 2013b. https://chemicalwatch-com.globalproxy.cvt.dk/17530/french-nanomaterials-register-receives-3400-declarations?q=French%20register

  • Paun, C., Chynoweth, E. 2014. Denmark launches consumer product register for nano. Chemical Watch 26 June 2014. Available: https://chemicalwatch-com.globalproxy.cvt.dk/20265/denmark-launchesconsumerproduct-register-fornano?q=Belgium%20notifies%20EU%20Commission%20of%20nano%20register%20plan; https://www.retsinformation.dk/Forms/R0710.aspx?id=163367 (Accessed 30-10-2015).

  • Qu H, Mudalige TK, Linder SW. Capillary electrophoresis/inductively-coupled plasma-mass spectrometry: development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements. Anal Chem. 2014;86:11620–7.

    Article  CAS  Google Scholar 

  • Quadros ME, Marr LC. Silver nanoparticles and Total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol. 2011;45:10713–9.

    Article  CAS  Google Scholar 

  • Quik JTK, Vonk AI, Hansen SF, Baun A, Van De Meent D. How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int. 2011;37(6):1068–77.

    Article  CAS  Google Scholar 

  • Salieri B, Turner B, Nowack B, Hischler R. Life cycle assessment of manufactured nanomaterials: where are we? NanoImpact. 2018;10:108–20.

    Article  Google Scholar 

  • TACD (Trans Atlantic Consumer Dialogue). Resolution on the need for mandatory reporting scheme and inventory for nanomaterials contained in consumer products. DOC No. Nano 02-11. 2011.

    Google Scholar 

  • The Nanodatabase. The nanodatabase. 2017. Available: www.nanodb.dk. Accessed 15 Jan 2017.

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769–80.

    Article  CAS  Google Scholar 

  • von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Gunther D, Hungerbuhler K. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam. 2013;30:612–20.

    Article  Google Scholar 

  • Wagener S, Dommershausen N, Jungnickel H, Laux P, Mitrano D, Nowack B, Schneider G, Luch A. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environ Sci Technol. 2016;50:5927–34.

    Article  CAS  Google Scholar 

  • Walser T, Limbach LK, Brogioli R, et al. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol. 2012;7:520–4.

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Oomen AG, Sips AJAM, Bourgeois FC, te Dorsthorst GJPM, Kooi MW, Bakker MI. Development of an inventory for consumer products containing nanomaterials. Final Report 070307/2010/580587/SER/D3. 2010. Available: http://ec.europa.eu/environment/chemicals/nanotech/pdf/study_inventory.pdf. Accessed 29 Oct 2015.

  • Windler L, Lorenz C, Von Goetz N, Hungerbühler K, Amberg M, Heuberger M, Nowack B. Release of titanium dioxide from textiles during washing. Environ Sci Technol [Internet]. 2012 [cited 2016 May 20];46:8181–8. Available from: http://pubs.acs.org/doi/abs/10.1021/es301633b

  • Zainzinger V. “Anomalies” in notifications behind nanomaterials inventory delay Cosmetics industry confused by different national rules, lack of test methods. 5 Mar 2015. Available: https://chemicalwatch.com/23044/anomalies-in-notifications-behind-nanomaterials-inventory-delay?q=nano%2C%20inventory. Accessed 13 Aug 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. F. Hansen or M. S. Hull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansen, S.F., Mackevica, A., Hull, M.S. (2021). Nano-enabled Consumer Products: Inventories, Release, and Exposures. In: Lead, J.R., Doak, S.H., Clift, M.J. (eds) Nanotoxicology in Humans and the Environment. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-79808-6_4

Download citation

Publish with us

Policies and ethics