Skip to main content

Abstract

“COVID-2019,” a recently emerged novel coronavirus disease, is causing serious health issues to the public and becoming more and more fatal every next day. On December 31, 2019, low respiratory infection cases were detected in Wuhan, China, which is in China’s Hubei province. The cases were reported to the WHO Office of China and they could not identify the agents for the cause. The first cases were classified to be “pneumonia of unknown etiology.” The investigation program was initiated by the Chinese Center for Disease Control and Prevention (CDC). The etiology of the disease was attributed to a novel virus of the coronavirus (CoV) family. Dr. Tedros Adhanom Ghebreyesus, WHO Director-General, called the disease caused by this CoV the “COVID-19,” which is an acronym for “coronavirus disease 2019.” It is found that “COVID-19” is caused by bête-coronavirus named “severe acute coronavirus-2” (SARS-CoV-2). It belongs to those virus families that appear as pneumonia in the human body. It affects the lower respiratory tract badly. This virus has been identified as another version of the family of severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) [1, 2]. SARS-CoV-2, SARS-CoV, and MERS-CoV possess similarity with them. They have differences in genotypic and phenotypic structure that guide their pathogenesis. So far, as per the findings, this virus originated in bats. It reached humans through contact with unknown animals. The transmission of this virus among humans is via direct contacts, inhalation of infected droplets, and contaminated hands and surfaces. Some of the symptoms of this disease are cough, sore cough, fever, fatigue, and dyspnea/breathlessness. The remedy of this disease is to diagnose the infection at the initial stage, supportive treatment to survive, self-quarantines, mass-quarantines, etc. This paper presents a systematic review of the origin of coronavirus, its types, transmissions, symptoms, and the current developments in diagnosing testing and vaccine trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: Spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23, 468–478.

    Google Scholar 

  2. Nieto-Torres, J. L., Dediego, M. L., Verdia-Baguena, C., et al. (2014). Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens, 10, e1004077. https://doi.org/10.1371/journal.ppat.1004077.

    Article  Google Scholar 

  3. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

    Article  Google Scholar 

  4. https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd

  5. Gu, J., Han, B., & Wang, J. (2020). COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology, 158(6), 1518–1519.

    Google Scholar 

  6. World Health Organization. (2014). Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. Geneva: World Health Organization. Available from: https://apps.who.int/iris/bitstream/handle/10665/112656/9789241507134_eng.pdf?sequence=1.

    Google Scholar 

  7. Liu, J., Liao, X., Qian, S., et al. (2020). Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerging Infectious Diseases, 26(6), 1320–1323. https://doi.org/10.3201/eid2606.200239.

    Article  Google Scholar 

  8. Chan, J., Yuan, S., Kok, K., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9.

    Article  Google Scholar 

  9. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H., Wong, J. Y., & Xing, X. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382, 1199–1207. https://doi.org/10.1056/NEJMoa2001316.

    Article  Google Scholar 

  10. Li, H., Liu, S. M., Yu, X. H., Tang, S. L., & Tang, C. K. (2020). Coronavirus disease 2019 (COVID-19): Current status and future perspective. International Journal of Antimicrobial Agents, 55(5), 105951.

    Google Scholar 

  11. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382, 727–733.

    Google Scholar 

  12. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 395(10224), 565–574.

    Google Scholar 

  13. Song, Z., Xu, Y., Bao, L., et al. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1), 59.

    Google Scholar 

  14. Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Reviews Microbiology, 11, 836–848.

    Google Scholar 

  15. Zumla, A., Hui, D. S., & Perlman, S. (2015). Middle East respiratory syndrome. Lancet, 386, 995–1007.

    Google Scholar 

  16. Hui, D. S., Azhar, E. I., Kim, Y. J., et al. (2018). Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission. The Lancet Infectious Diseases, 18, e217–e227.

    Google Scholar 

  17. Reusken, C. B., Haagmans, B. L., Muller, M. A., et al. (2013). Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study. The Lancet Infectious Diseases, 13, 859–866.

    Google Scholar 

  18. de Wit, E., van Doremalen, N., Falzarano, D., et al. (2016). SARS and MERS: Recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14, 523–534.

    Google Scholar 

  19. de Groot, R. J., Baker, S. C., Baric, R., Enjuanes, L., Gorbalenya, A. E., Holmes, K. V., Perlman, S., Poon, L., Rottier, P. J. M., Talbot, P. J., & Woo, P. C. Y. (2012). Family Coronaviridae. In Virus taxonomy (pp. 806–828). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  20. Yang, D., & Leibowitz, J. L. (2015). The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Research, 206, 120–133.

    Google Scholar 

  21. Nakagawa, K., Lokugamage, K. G., & Makino, S. (2016). Viral and cellular mRNA translation in coronavirus-infected cells. In Advances in virus research (Vol. 96, pp. 165–192). Amsterdam: Academic Press.

    Google Scholar 

  22. Ramaiah, A., & Arumugaswami, V. (2020). Insights into cross-species evolution of novel human coronavirus 2019-nCoV and defining immune determinants for vaccine development. bioRxiv, 1–15. https://doi.org/10.1101/2020.01.29.925867.

  23. Wu, A., Peng, Y., Huang, B., et al. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host and Microbe, 27(3), 325–328.

    Google Scholar 

  24. Barcena, M., Oostergetel, G. T., Bartelink, W., et al. (2009). Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proceedings of the National Academy of Sciences of the United States of America, 106, 582–587.

    Google Scholar 

  25. Neuman, B. W., Adair, B. D., Yoshioka, C., et al. (2006). Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of Virology, 80, 7918–7928.

    Google Scholar 

  26. Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection, 54(2), 159–163.

    Google Scholar 

  27. Abraham, S., Kienzle, T. E., Lapps, W., et al. (1990). Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology, 176, 296–301.

    Google Scholar 

  28. Luytjes, W., Sturman, L. S., Bredenbeek, P. J., et al. (1987). Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology, 161, 479–487.

    Google Scholar 

  29. Beniac, D. R., Andonov, A., Grudeski, E., et al. (2006). Architecture of the SARS coronavirus prefusion spike. Nature Structural & Molecular Biology, 13, 751–752. https://doi.org/10.1038/nsmb1123.

    Article  Google Scholar 

  30. Delmas, B., & Laude, H. (1990). Assembly of coronavirus spike protein into trimers and its role in epitope expression. Journal of Virology, 64, 5367–5375.

    Google Scholar 

  31. Walls, A. C., Xiong, X., Park, Y. J., et al. (2019). Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 176, 1026–1039.e1015.

    Google Scholar 

  32. Wrapp, D., Wang, N., Corbett, K. S., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the refusion conformation. Science, 367(6483), 1260–1263.

    Google Scholar 

  33. Armstrong, J., Niemann, H., Smeekens, S., et al. (1984). Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature, 308, 751–752.

    Google Scholar 

  34. Neuman, B. W., Kiss, G., Kunding, A. H., et al. (2011). A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology, 174, 11–22. https://doi.org/10.1016/j.jsb.2010.11.021.

    Article  Google Scholar 

  35. Godet, M., L’Haridon, R., Vautherot, J. F., et al. (1992). TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology, 188, 666–675.

    Google Scholar 

  36. Chang, C. K., Sue, S. C., Yu, T. H., et al. (2006). Modular organization of SARS coronavirus nucleocapsid protein. Journal of Biomedical Science, 13, 59–72. https://doi.org/10.1007/s11373-005-9035-9.

    Article  Google Scholar 

  37. Stohlman, S. A., Baric, R. S., Nelson, G. N., et al. (1988). Specific interaction between coronavirus leader RNA and nucleocapsid protein. Journal of Virology, 62, 4288–4295.

    Google Scholar 

  38. Molenkamp, R., & Spaan, W. J. (1997). Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology, 239, 78–86.

    Google Scholar 

  39. Kuo, L., & Masters, P. S. (2013). Functional analysis of the murine coronavirus genomic RNA packaging signal. Journal of Virology, 87, 5182–5192. https://doi.org/10.1128/JVI.00100-13.

    Article  Google Scholar 

  40. Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., et al. (2005). Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. Journal of Virology, 79(18), 11892–11900.

    Google Scholar 

  41. Gralinski, L. E., & Menachery, V. D. (2020). Return of the coronavirus: 2019-nCoV. Viruses, 12(2), 135.

    Google Scholar 

  42. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., & Chen, H. D. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7.

    Article  Google Scholar 

  43. Hui, D. S., Azhar, E. I., Madani, T. A., et al. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266.

    Google Scholar 

  44. Tripathi, A., Jain, A., Mishra, K. K., Pandey, A. B., & Vashist, P. C. (2020). MCNN: A deep learning based rapid diagnosis method for COVID-19 from the X-ray images. Revue d’Intelligence Artificielle, 34(6), 673–682.

    Google Scholar 

  45. https://www.who.int/health-topics/coronavirus/who-recommendations-to-reduce-risk-of-transmission-of-emerging-pathogens-from-animals-to-humans-in-live-animal-markets

  46. Ren, L. L., Wang, Y. M., Wu, Z. Q., Xiang, Z. C., Guo, L., Xu, T., et al. (2020). Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chinese Medical Journal, 133(9), 1015–1024. https://doi.org/10.1097/CM9.0000000000000722.

    Article  Google Scholar 

  47. Wang, W., Tang, J., & Wei, F. (2020). Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. Journal of Medical Virology, 92(4), 441–447. https://doi.org/10.1002/jmv.25689.

    Article  Google Scholar 

  48. Carlos, W. G., Dela Cruz, C. S., Cao, B., Pasnick, S., & Jamil, S. (2020). Novel Wuhan (2019-nCoV) coronavirus. American Journal of Respiratory and Critical Care Medicine, 201(4), 7–8. https://doi.org/10.1164/rccm.2014P7.

    Article  Google Scholar 

  49. Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., et al. (2020). First case of 2019 novel coronavirus in the United States. The New England Journal of Medicine, 382, 929–936. https://doi.org/10.1056/NEJMoa2001191.

    Article  Google Scholar 

  50. Liu, K., Fang, Y. Y., Deng, Y., Liu, W., Wang, M. F., Ma, J. P., et al. (2020). Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chinese Medical Journal, 133(9), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744.

    Article  Google Scholar 

  51. Backer, J. A., Klinkenberg, D., & Wallinga, J. (2020). Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveillance, 25(5), 2000062.

    Google Scholar 

  52. Lauer, S. A., Grantz, K. H., Bi, Q., et al. (2020). The incubation period of 2019-nCoV from publicly reported confirmed cases: Estimation and application. medRxiv. https://www.medrxiv.org/content/10.1101/2020.02.02.20020016v1 2020

  53. Varia, M., Wilson, S., Sarwal, S., et al. (2003). Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada. CMAJ, 169, 285–292.

    Google Scholar 

  54. Assiri, A., Al-Tawfiq, J. A., Al-Rabeeah, A. A., et al. (2013). Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. The Lancet Infectious Diseases, 13, 752–761.

    Google Scholar 

  55. Wang, D., Hu, B., Hu, C., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11), 1061–1069.

    Google Scholar 

  56. Guan, W. J., Ni, Z. Y., Hu, Y., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382, 1708–1720.

    Google Scholar 

  57. Chiu, W. K., Cheung, P. C., Ng, K. L., et al. (2003). Severe acute respiratory syndrome in children: Experience in a regional hospital in Hong Kong. Pediatric Critical Care Medicine, 4, 279–283.

    Google Scholar 

  58. Donnelly, C. A., Ghani, A. C., Leung, G. M., et al. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet, 361, 1761–1766.

    Google Scholar 

  59. Leung, G. M., Hedley, A. J., Ho, L.-M., & Chau, P. (2004). The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: An analysis of all 1755 patients. Annals of Internal Medicine, 141, 662–673.

    Google Scholar 

  60. Wang, W., Xu, Y., Ruqin, G., et al. (2020). Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 323(18), 1843–1844. https://doi.org/10.1001/jama.2020.3786.9.

    Article  Google Scholar 

  61. Lauer, S. A., Grantz, K. H., Bi, Q., et al. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577–582. https://doi.org/10.7326/M20-0504.10.

    Article  Google Scholar 

  62. Liu, Y., Yan, L. M., Wan, L., et al. (2020). Viral dynamics in mild and severe cases of CVOID-19. The Lancet Infectious Diseases, 20(6), 656–657. https://doi.org/10.1016/S1473-3099(20)30232-2.

    Article  Google Scholar 

  63. Wolfel, R., Corman, V., Guggemos, W., et al. (2020). Virological assessment of hospitalized cases of coronavirus disease. Nature, 581, 465–469. https://doi.org/10.1101/2020.03.05.20030502.

    Article  Google Scholar 

  64. Centers for Disease Control and Prevention. (2020). 2019 novel coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/about/transmission.html

  65. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf?sfvrsn=5ae25bc7_2

  66. https://www.cidrap.umn.edu/news-perspective/2020/03/commentary-covid-19-transmission-messages-should-hinge-science

  67. Weiss, A., Jellingsø, M., & Sommer, M. O. A. (2020). Spatial and temporal dynamics of SARS-CoV-2 in COVID-19 patients: A systematic review and meta-analysis. eBioMedicine, 58, 102916.

    Google Scholar 

  68. Guo, W. L., Jiang, Q., Ye, F., Li, S. Q., Hong, C., Chen, L. Y., & Li, S. Y. (2020). Effect of throat washings on detection of 2019 novel coronavirus. Clinical Infectious Diseases, 71(8), ciaa416. https://doi.org/10.1093/cid/ciaa416.

    Article  Google Scholar 

  69. Vlek, A. L. M., Wesselius, T. S., Achterberg, R., & Thijsen, S. F. T. (2021). Combined throat/nasal swab sampling for SARS-CoV-2 is equivalent to nasopharyngeal sampling. European Journal of Clinical Microbiology & Infectious Diseases, 40(1), 193–195.

    Google Scholar 

  70. LeBlanc, J. J., Heinstein, C., MacDonald, J., Pettipas, J., Hatchette, T. F., & Patriquin, G. (2020). A combined oropharyngeal/nares swab is a suitable alternative to nasopharyngeal swabs for the detection of SARS-CoV-2. Journal of Clinical Virology, 128, 104442.

    Google Scholar 

  71. Tu, Y. P., Jennings, R., Hart, B., Cangelosi, G. A., Wood, R. C., Wehber, K., Verma, P., Vojta, D., & Berke, E. M. (2020). Swabs collected by patients or health care workers for SARS-CoV-2 testing. The New England Journal of Medicine, 383(5), 494–496.

    Google Scholar 

  72. Altamirano, J., Govindarajan, P., Blomkalns, A. L., Kushner, L. E., Stevens, B. A., Pinsky, B. A., & Maldonado, Y. (2020). Assessment of sensitivity and specificity of patient-collected lower nasal specimens for sudden acute respiratory syndrome coronavirus 2 testing. JAMA Network Open, 3(6), e2012005.

    Google Scholar 

  73. Ng, S. C., Chan, F. K., & Chan, P. K. (2020). Screening FMT donors during the COVID-19 pandemic: A protocol for stool SARS-CoV-2 viral quantification. The Lancet. Gastroenterology & Hepatology, 5(7), 642–643.

    Google Scholar 

  74. Tang, J. W., To, K. F., Lo, A. W., Sung, J. J., Ng, H. K., & Chan, P. K. (2007). Quantitative temporal-spatial distribution of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in post-mortem tissues. Journal of Medical Virology, 79(9), 1245–1253.

    Google Scholar 

  75. Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., Beskid, T. R., & Jervey, S. R. (2020). Assay techniques and test development for COVID-19 diagnosis. ACS Central Science, 6(5), 591–605.

    Google Scholar 

  76. World Health Organization. (2020). Diagnostic testing for SARS-CoV-2: Interim guidance, 11 September 2020 (No. WHO/2019-nCoV/laboratory/2020.6). Geneva: World Health Organization.

    Google Scholar 

  77. Esbin, M. N., Whitney, O. N., Chong, S., Maurer, A., Darzacq, X., & Tjian, R. (2020). Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA, 26(7), 771–783.

    Google Scholar 

  78. Zou, L., et al. (2020). SARS-CoV-2 viral load in upper respiratory specimens of infected patients. The New England Journal of Medicine, 382(12), 1177–1179.

    Google Scholar 

  79. Young, B. E., Ong, S. W. X., Kalimuddin, S., Low, J. G., Tan, S. Y., Loh, J., Ng, O. T., Marimuthu, K., Ang, L. W., Mak, T. M., & Lau, S. K. (2020). Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA, 323(15), 1488–1494.

    Google Scholar 

  80. Yelin, I., Aharony, N., Shaer-Tamar, E., Argoetti, A., Messer, E., Berenbaum, D., Shafran, E., Kuzli, A., Gandali, N., Hashimshony, T., & Mandel-Gutfreund, Y. (2020). Evaluation of COVID-19 RT-qPCR test in multi-sample pools. medRxiv.

    Google Scholar 

  81. Sawarkar, S. S., Victor, A., Viotti, M., Haran, S. P., Verma, S., Griffin, D., & Sams, J. (2020). Sample pooling, a population screening strategy for SARS-CoV2 to prevent future outbreak and mitigate the second-wave of infection of the virus. medRxiv.

    Google Scholar 

  82. Abdalhamid, B., Bilder, C. R., McCutchen, E. L., Hinrichs, S. H., Koepsell, S. A., & Iwen, P. C. (2020). Assessment of specimen pooling to conserve SARS CoV-2 testing resources. American Journal of Clinical Pathology, 153(6), 715–718.

    Google Scholar 

  83. Aragón-Caqueo, D., Fernández-Salinas, J., & Laroze, D. (2020). Optimization of group size in pool testing strategy for SARS-CoV-2: A simple mathematical model. Journal of Medical Virology, 92(10), 25929. https://doi.org/10.1002/jmv.25929.

    Article  Google Scholar 

  84. Ben-Ami, R., Klochendler, A., Seidel, M., Sido, T., Gurel-Gurevich, O., Yassour, M., Meshorer, E., Benedek, G., Fogel, I., Oiknine-Djian, E., & Gertler, A. (2020). Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clinical Microbiology and Infection, 26(9), 1248–1253.

    Google Scholar 

  85. World Health Organization. (2020, April 8). Advice on the use of point-of-care immunodiagnostic tests for COVID-19. Available from: https://apps.who.int/iris/handle/10665/331713

  86. World Health Organization. (2020, July 27). The unity studies: Early investigations protocols. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations

  87. Okba, N. M., Müller, M. A., Li, W., Wang, C., Geurtsvan Kessel, C. H., Corman, V. M., Lamers, M. M., Sikkema, R. S., de Bruin, E., Chandler, F. D., & Yazdanpanah, Y. (2020). Severe acute respiratory syndrome coronavirus 2−specific antibody responses in coronavirus disease patients. Emerging Infectious Diseases, 26(7), 1478–1488.

    Google Scholar 

  88. Lou, B., Li, T. D., Zheng, S. F., Su, Y. Y., Li, Z. Y., Liu, W., Yu, F., Ge, S. X., Zou, Q. D., Yuan, Q., & Lin, S. (2020). Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset. European Respiratory Journal, 56(2), 2000763.

    Google Scholar 

  89. https://www.medicinenet.com/monoclonal_antibodies/article.htm#what_are_human_ monoclonal_antibodies

  90. Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2(1), 1–10.

    Google Scholar 

  91. https://www.ncbi.nlm.nih.gov/books/NBK554776/

  92. https://www.who.int/publications/i/item/an-international-randomised-trial-of-candidate-vaccines-against-covid-19

  93. https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update37-vaccine-development.pdf?sfvrsn=2581e994_6

  94. https://www.nature.com/articles/d41586-020-01221-y

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, A., Pandey, A.B., Singh, A.K., Jain, A., Tyagi, V., Vashist, P.C. (2022). Diagnosis for COVID-19. In: Pani, S.K., Dash, S., dos Santos, W.P., Chan Bukhari, S.A., Flammini, F. (eds) Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-79753-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79753-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79752-2

  • Online ISBN: 978-3-030-79753-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics