Skip to main content

Application of Fan Boundary Condition for Modelling Helicopter Rotors in Vertical Flight

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XIII (STAB/DGLR Symposium 2020)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 151))

Included in the following conference series:

  • 2101 Accesses

Abstract

The fan boundary condition in Ansys Fluent was applied to a helicopter rotor in vertical flight using a Robinson R22 geometry. This simplified boundary condition, which is based on a pressure jump over an actuator disk, offers considerable advantages in speed and stability compared to methods using a blade element theory. It was shown that the identification of different rotor working states and preparation of the induced velocity curve is possible by applying the analyzed rotor model. Particular attention was given to the prediction of the vortex ring state - a phenomenon that cannot be described using the momentum theory and which poses a significant threat during helicopter flight. The outcomes were comparable to those of experimental visualizations and simulations performed using the more computationally expensive Virtual Blade Model, thereby proving the viability of the fan boundary condition to model the main rotors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ANSYS Inc.: ANSYS ICEM CFD 14.5 User’s Manual (2012)

    Google Scholar 

  2. ANSYS Inc.: ANSYS Fluent User’s Guide (2013)

    Google Scholar 

  3. Boatwright, D.: Measurements of velocity components in the wake of a full-scale helicopter rotor in hover. Missisipi State Univeristy (1972)

    Google Scholar 

  4. Castles, W., Jr., Gray, R.B.: Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors. NACA-TN-2474 (1951)

    Google Scholar 

  5. Conway, J.T.: Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction. J. Fluid Mech. 365(1), 235–267 (1998)

    Article  Google Scholar 

  6. Grzegorczyk, K.: Wykorzystanie metod obliczeniowej mechaniki plynow do modelowania szczegolnego przypadku znizania smiglowca (VRS). Institute of Aviation, Warsaw (2010). [Eng.: Application of CFD methods for modelling a specific case of helicopter descent (VRS)]

    Google Scholar 

  7. Johnson, W.: Helicopter Theory. Dover Publications Inc., New York (1980)

    Google Scholar 

  8. Kostek, A.A.: Modelowanie wirnikow nosnych za pomoca warunku brzegowego fan na przykladzie smiglowca Robinson R22. M.Sc. thesis, Warsaw University of Technology (2019). [Eng.: Modelling of helicopter main rotors using the fan boundary conditon based on the example of the Robinson R22 helicopter]

    Google Scholar 

  9. Leishman, G.: Principles of Helicopter Aerodynamics. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  10. Robinson Helicopter Company: R22 Maintenance Manual (2018)

    Google Scholar 

  11. Surmacz, K.: Dynamika zjawiska pierscienia wirowego na wirniku nosnym smiglowca. Ph.D. thesis, Air Force Institute of Technology, Warsaw (2015). [Eng.: Dynamics of the vortex ring state on the helicopter main rotor]

    Google Scholar 

  12. Siemens Documentation, NX 12 (2017)

    Google Scholar 

  13. Stalewski, W., Surmacz, K.: Investigations of the vortex ring state on a helicopter main rotor based on computational methodology using URANS solver. Lukasiewicz Research Network - Institute of Aviation, Warsaw (2019)

    Google Scholar 

  14. Stryczniewicz, W., Surmacz, K.: Badania eksperymentalne stanu pierscienia wirowego na wirniku nosnym smiglowca metoda anemometrii obrazowej (PIV). Institute of Aviation, Warsaw (2014). [Eng.: Experimental studies on the vortex ring state on helicopter main rotor using Particle Image Velocimetry (PIV)]

    Google Scholar 

  15. Surmacz, K., Ruchała, P., Stryczniewicz, W.: Wind tunnel tests of the development and demise of Vortex Ring State of the rotor. Institute of Aviation, Warsaw (2014)

    Google Scholar 

  16. Washizu, K., Azuma, A., Koo, J., Oka, T.: Experiments on a model helicopter rotor operating in the vortex ring state. J. Aircr. 3(3), 225–230 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Kostek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostek, A.A., Surmacz, K., Rajek, M., Goetzendorf-Grabowski, T. (2021). Application of Fan Boundary Condition for Modelling Helicopter Rotors in Vertical Flight. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C. (eds) New Results in Numerical and Experimental Fluid Mechanics XIII. STAB/DGLR Symposium 2020. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-030-79561-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79561-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79560-3

  • Online ISBN: 978-3-030-79561-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics