Skip to main content

Threshold-Based Network Structural Dynamics

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2021)

Abstract

The interest in dynamic processes on networks is steadily rising in recent years. In this paper, we consider the \((\alpha ,\beta )\)-Thresholded Network Dynamics (\((\alpha ,\beta )\)-Dynamics), where \(\alpha \le \beta \), in which only structural dynamics (dynamics of the network) are allowed, guided by local thresholding rules executed by each node. In particular, in each discrete round t, each pair of nodes u and v that are allowed to communicate by the scheduler, computes a value \(\mathcal {E}(u,v)\) (the potential of the pair) as a function of the local structure of the network at round t around the two nodes. If \(\mathcal {E}(u,v) < \alpha \) then the link (if it exists) between u and v is removed; if \(\alpha \le \mathcal {E}(u,v) < \beta \) then an existing link among u and v is maintained; if \(\beta \le \mathcal {E}(u,v)\) then a link between u and v is established if not already present.

The microscopic structure of \((\alpha ,\beta )\)-Dynamics appears to be simple, so that we are able to rigorously argue about it, but still flexible, so that we are able to design meaningful microscopic local rules that give rise to interesting macroscopic behaviors. Our goals are the following: a) to investigate the properties of the \((\alpha ,\beta )\)-Thresholded Network Dynamics and b) to show that \((\alpha ,\beta )\)-Dynamics is expressive enough to solve complex problems on networks.

Our contribution in these directions is twofold. We rigorously exhibit the claim about the expressiveness of \((\alpha ,\beta )\)-Dynamics, both by designing a simple protocol that provably computes the k-core of the network as well as by showing that \((\alpha ,\beta )\)-Dynamics are in fact Turing-Complete. Second and most important, we construct general tools for proving stabilization that work for a subclass of \((\alpha ,\beta )\)-Dynamics and prove speed of convergence in a restricted setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Therefore, we only use identifiers of nodes for analysis purposes.

  2. 2.

    The permanence of enmity is in fact not exactly compatible with structural balance theory on networks.

References

  1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331, 183–5 (2011)

    Article  MathSciNet  Google Scholar 

  2. Alistarh, D., Gelashvili, R.: Recent algorithmic advances in population protocols. SIGACT News 49(3), 63–73 (2018)

    Article  MathSciNet  Google Scholar 

  3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  Google Scholar 

  4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

    Article  Google Scholar 

  5. Antal, T., Krapivsky, P., Redner, S.: Social balance on networks: the dynamics of friendship and enmity. Physica D Nonlinear Phenom. 224(1), 130–136 (2006)

    Article  MathSciNet  Google Scholar 

  6. Arrighi, P., Dowek, G.: Free fall and cellular automata. Developments in computational models. EPTCS 204, 1–10 (2015)

    Article  Google Scholar 

  7. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  8. Batagelj, V., Mrvar, A., Zaveršnik, M.: Partitioning approach to visualization of large graphs. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 90–97. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7_9

    Chapter  Google Scholar 

  9. Becchetti, L., Clementi, A., Natale, E.: Consensus dynamics: an overview. SIGACT News 51(1), 58–104 (2020)

    Article  MathSciNet  Google Scholar 

  10. Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Trevisan, L.: Find your place: simple distributed algorithms for community detection. In: SODA 2017, pp. 940–959 (2017)

    Google Scholar 

  11. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  12. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Kipouridis, E., Spirakis, P.G., Tsichals, K.: Threshold-based network structural dynamics. CoRR abs/2103.04955 (2019). http://arxiv.org/abs/2103.04955

  14. Gadouleau, M.: On the influence of the interaction graph on a finite dynamical system. Natural Comput. 19(1), 15–28 (2019). https://doi.org/10.1007/s11047-019-09732-y

    Article  MathSciNet  Google Scholar 

  15. Gärtner, B., Zehmakan, A.: (Biased) majority rule cellular automata. CoRR abs/1711.10920 (2017)

    Google Scholar 

  16. Heider, F.: The Psychology of Interpersonal Relations. John Wiley and Sons, Hoboken (1958)

    Book  Google Scholar 

  17. Ilachinski, A.: Structurally dynamic cellular automata. In: Adamatzky, A. (ed.) Cellular Automata. ECSSS, pp. 29–71. Springer, New York (2009). https://doi.org/10.1007/978-1-4939-8700-9_528

    Chapter  Google Scholar 

  18. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal, E.: The web as a graph. In: PODS 2000, pp. 1–10 (2000)

    Google Scholar 

  19. Malliaros, F.D., Giatsidis, C., Papadopoulos, A.N., Vazirgiannis, M.: The core decomposition of networks: theory, algorithms and applications. VLDB J. 29(1), 61–92 (2019). https://doi.org/10.1007/s00778-019-00587-4

    Article  Google Scholar 

  20. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 29(3), 207–237 (2015). https://doi.org/10.1007/s00446-015-0257-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Michail, O., Spirakis, P.: Network constructors: a model for programmable matter. In: SOFSEM 2017, pp. 15–34 (2017)

    Google Scholar 

  22. Michail, O., Spirakis, P.: Elements of the theory of dynamic networks. Commun. ACM 61(2), 72 (2018)

    Article  Google Scholar 

  23. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  24. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: DIALM-POMC 2005, pp. 104–110 (2005)

    Google Scholar 

  25. Saidani, S.: Self-reconfigurable robots topodynamic. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA, vol. 3, pp. 2883–2887 (2004)

    Google Scholar 

  26. Sayama, H., Laramee, C.: Generative network automata: a generalized framework for modeling adaptive network dynamics using graph rewritings. In: Gross, T., Sayama, H. (eds.) Adaptive Networks. UCS, Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01284-6_15

    Chapter  Google Scholar 

  27. Smith, D., Onnela, J.P., Lee, C., Fricker, M., Johnson, N.: Network automata: coupling structure and function in dynamic networks. Adv. Complex Syst. 14(03), 317–339 (2011)

    Article  MathSciNet  Google Scholar 

  28. Szekeres, G., Wilf, H.: An inequality for the chromatic number of a graph. J. Comb. Theory 4, 1–3 (1968)

    Article  MathSciNet  Google Scholar 

  29. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  30. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)

    MATH  Google Scholar 

  31. Wolfram, S.: A class of models with the potential to represent fundamental physics (2020)

    Google Scholar 

  32. Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detection on large networks with propinquity dynamics. In: ACM SIGKDD 2009, pp. 997–1006 (2009)

    Google Scholar 

Download references

Funding

Evangelos Kipouridis: Received funding from the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 801199. Evangelos Kipouridis is also supported by Thorups Investigator Grant 16582, Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kipouridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kipouridis, E., Spirakis, P.G., Tsichlas, K. (2021). Threshold-Based Network Structural Dynamics. In: Jurdziński, T., Schmid, S. (eds) Structural Information and Communication Complexity. SIROCCO 2021. Lecture Notes in Computer Science(), vol 12810. Springer, Cham. https://doi.org/10.1007/978-3-030-79527-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79527-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79526-9

  • Online ISBN: 978-3-030-79527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics