Skip to main content

Early OA Following Synovial Joint Fracture

  • Chapter
  • First Online:
Early Osteoarthritis

Abstract

Excessive synovial joint loadings, acute single articular surface impacts and/or chronic repetitive aberrant contact stresses, cause joint degeneration leading to the clinical syndrome of osteoarthritis (OA). Intra-articular fractures (IAFs), joint injuries that fracture the articular surface and the underlying subchondral bone, are the injuries that most predictably lead to post-traumatic OA (PTOA). Both the acute injury and any residual joint incongruity and instability contribute to the risk of PTOA. Despite advances in IAF treatment, this risk has not decreased in the last 50 years. However, recent work shows that the potential to prevent or mitigate PTOA exists. Quantitative methods of determining IAF energy and cumulative chronic joint overloading due to residual joint incongruity predict the risk of PTOA. They define joint loading thresholds that cause PTOA in human joints making it possible to assess the efficacy of treatments intended to reduce PTOA risk. In vitro and in vivo investigations of joint biologic responses to excessive loads show that reactive oxygen species (ROS) produced by chondrocytes cause mitochondrial damage and dysfunction, chondrocyte death, matrix degradation, and articular cartilage erosion. Excessive ROS after injury also accelerates chondrocyte aging and senescence, thereby increasing the secretion of pro-inflammatory chemokines, cytokines, and matrix proteases that cause cartilage destruction. Small and large animal studies show that preventing ROS production or providing antioxidant support preserves chondrocytes and their matrix following IAFs and similar injuries. In addition to ROS, injured chondrocytes release alarmins that activate chondrocyte progenitor cells that proliferate and migrate to damaged cartilage, contributing to inflammation as well as cartilage healing. These advances in the understanding of how early pathologic responses after IAF cause PTOA provide the basis for new approaches to the prevention or mitigation of PTOA. Promising approaches include minimizing the deleterious effects of ROS, removal of senescent cells, and use of chondrocyte progenitor cells to restore articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown TD, Johnston JC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20:739–44.

    Article  PubMed  Google Scholar 

  2. Saltzman CL, Zimmerman MB, O'Rourke M, Brown TD, Buckwalter JA, Johnston R. Impact of comorbidities on the measurement of health in patients with ankle osteoarthritis. J Bone Joint Surg Am. 2006;88(11):2366–72.

    Article  PubMed  Google Scholar 

  3. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buckwalter JA, Felson DT. Post-traumatic arthritis: definitions and burden of disease. In: Olson SA, Guilak F, editors. Post-traumatic arthritis. New York: Springer; 2015. p. 7–15.

    Chapter  Google Scholar 

  5. Saltzman CL, Salamon ML, Blanchard GM, Huff T, Hayes A, Buckwalter JA, et al. Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J. 2005;25:44–6.

    PubMed  PubMed Central  Google Scholar 

  6. Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clin Orthop Relat Res. 2004;(427 Suppl):S6–15.

    Google Scholar 

  7. McKinley TO, Rudert MJ, Koos DC, Brown TD. Incongruity versus instability in the etiology of posttraumatic arthritis. Clin Orthop Relat Res. 2004;423:44–51.

    Article  Google Scholar 

  8. McKinley TO, Tochigi Y, Rudert MJ, Brown TD. The effect of incongruity and instability on contact stress directional gradients in human cadaveric ankles. Osteoarthr Cartil. 2008;16(11):1363–9.

    Article  CAS  Google Scholar 

  9. McKinley TO, Tochigi Y, Rudert MJ, Brown TD. Instability-associated changes in contact stress and contact stress rates near a step-off incongruity. J Bone Joint Surg Am. 2008;90(2):375–83.

    Article  PubMed  Google Scholar 

  10. Tochigi Y, Vaseenon T, Heiner AD, Fredericks DC, Martin JA, Rudert MJ, et al. Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am. 2011;93(7):640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.

    PubMed  Google Scholar 

  12. Buckwalter JA, Martin J, Mankin HJ. Synovial joint degeneration and the syndrome of osteoarthritis. Instr Course Lect. 2000;49:481–9.

    CAS  PubMed  Google Scholar 

  13. Buckwalter JA. Sports, joint injury, and posttraumatic osteoarthritis. J Orthop Sports Phys Ther. 2003;33(10):578–88.

    Article  PubMed  Google Scholar 

  14. Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res. 2004;423:7–16.

    Article  Google Scholar 

  15. Buckwalter JA, Mow VC. Sports injuries to articular cartilage. In: DeLee JC, Drez D, editors. Orthopaedic sports medicine: principles and practice. Philadelphia: Saunders; 1994. p. 82–107.

    Google Scholar 

  16. Aurich M, Koenig V, Hofmann G. Comminuted intraarticular fractures of the tibial plateau lead to posttraumatic osteoarthritis of the knee: current treatment review. Asian J Surg. 2017.

    Google Scholar 

  17. Borrelli J Jr, Torzilli PA, Grigiene R, Helfet DL. Effect of impact load on articular cartilage: development of an intra-articular fracture model. J Orthop Trauma. 1997;11(5):319–26.

    Article  PubMed  Google Scholar 

  18. Bourne RB, Rorabeck CH, Macnab J. Intra-articular fractures of the distal tibia: the pilon fracture. J Trauma. 1983;23(7):591–6.

    Article  CAS  PubMed  Google Scholar 

  19. Dirschl DR, Marsh JL, Buckwalter JA, Gelberman R, Olson SA, Brown TD, et al. Articular fractures. J Am Acad Orthop Surg. 2004;12(6):416–23.

    Article  PubMed  Google Scholar 

  20. Furman BD, Olson SA, Guilak F. The development of posttraumatic arthritis after articular fracture. J Orthop Trauma. 2006;20(10):719–25.

    Article  PubMed  Google Scholar 

  21. Jupiter JB. Complex articular fractures of the distal radius: classification and management. J Am Acad Orthop Surg. 1997;5(3):119–29.

    Article  CAS  PubMed  Google Scholar 

  22. Marsh JL, Buckwalter J, Gelberman R, Dirschl D, Olson S, Brown T, et al. Articular fractures: does an anatomic reduction really change the result? J Bone Joint Surg Am. 2002;84-A(7):1259–71.

    Article  Google Scholar 

  23. Masrouha KZ, Anderson DD, Thomas TP, Kuhl LL, Brown TD, Marsh JL. Acute articular fracture severity and chronic cartilage stress challenge as quantitative risk factors for post-traumatic osteoarthritis: illustrative cases. Iowa Orthop J. 2010;30:47–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McKinley TO, Borrelli J Jr, D'Lima DD, Furman BD, Giannoudis PV. Basic science of intra-articular fractures and posttraumatic osteoarthritis. J Orthop Trauma. 2010;24(9):567–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Olson SA, Guilak F. From articular fracture to posttraumatic arthritis: a black box that needs to be opened. J Orthop Trauma. 2006;20(10):661–2.

    Article  PubMed  Google Scholar 

  26. Schenker ML, Mauck RL, Ahn J, Mehta S. Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. J Am Acad Orthop Surg. 2014;22(1):20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Volpin G, Dowd GS, Stein H, Bentley G. Degenerative arthritis after intra-articular fractures of the knee. Long-term results. J Bone Joint Surg Br. 1990;72(4):634–8.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas TP, Anderson DD, Mosqueda TV, Van Hofwegen CJ, Hillis SL, Marsh JL, et al. Objective CT-based metrics of articular fracture severity to assess risk for posttraumatic osteoarthritis. J Orthop Trauma. 2010;24(12):764–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Trumble TE, Culp RW, Hanel DP, Geissler WB, Berger RA. Intra-articular fractures of the distal aspect of the radius. Instr Course Lect. 1999;48:465–80.

    CAS  PubMed  Google Scholar 

  30. Buckwalter JA. Mechanical injuries of articular cartilage. In: Finerman G, editor. Biology and biomechanics of the traumatized synovial joint. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1992. p. 83–96.

    Google Scholar 

  31. Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;402:21–37.

    Article  Google Scholar 

  32. Rivera JC, Wenke JC, Buckwalter JA, Ficke JR, Johnson AE. Post-traumatic osteoarthritis caused by battlefield injuries is the primary source of disability in warriors. J Am Acad Orthop Surg. 2012;20:S64–S9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buckwalter JA. Osteoarthritis and articular cartilage use, disuse, and abuse: experimental studies. J Rheumatol Suppl. 1995;43:13–5.

    CAS  PubMed  Google Scholar 

  34. Buckwalter JA, Mankin HJ. Articular cartilage II. Degeneration and osteoarthrosis, repair, regeneration and transplantation. J Bone Joint Surg. 1997;79A(4):612–32.

    Article  Google Scholar 

  35. Buckwalter JA, Martin JA, Brown TD. Perspectives on chondrocyte mechanobiology and osteoarthritis. Biorheology. 2006;43(3–4):603–9.

    PubMed  Google Scholar 

  36. Schumacher HR, Chen LX, Buckwalter J. Secondary osteoarthritis. In: Moskowitz RW, Altman RD, Hockberg MC, Goldberg VM, editors. Osteoarthritis: diagnosis and medical/surgical management. Philadelphia: Wolters Kluwer; 2006. p. 233–53.

    Google Scholar 

  37. Martin JA, Anderson DD, Goetz JE, Fredericks D, Pedersen DR, Ayati BP, et al. Complementary models reveal cellular responses to contact stresses that contribute to post-traumatic osteoarthritis. J Orthop Res. 2017;35(3):515–23.

    Article  PubMed  Google Scholar 

  38. Buckwalter JA, Martin JA. Osteoarthritis. Adv Drug Deliv Rev. 2006;58(2):150–67.

    Article  CAS  PubMed  Google Scholar 

  39. Felson DT. Osteoarthritis as a disease of mechanics. Osteoarthr Cartil. 2013;21(1):10–5.

    Article  CAS  Google Scholar 

  40. Buckwalter JA. Advancing the science and art of orthopaedics. Lessons from history. J Bone Joint Surg Am. 2000;82(12):1782–803.

    Article  CAS  PubMed  Google Scholar 

  41. Peltier LF. Fractures: a history and iconography of their treatment. San Francisco: Norman; 1990. 273 p.

    Google Scholar 

  42. LeVay D. The history of orthopaedics. New Jersey: Parthenon; 1990. 693 p.

    Google Scholar 

  43. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium-2018. J Orthop Trauma. 2018;32(Suppl 1):S1–S170.

    Article  Google Scholar 

  44. Vosoughi AR, Shayan Z, Salehi E, Jaberi FM, Solooki S, Kardeh B. Agreement between Sanders classification of intraarticular calcaneal fractures and assessment during the surgery. Foot Ankle Surg. 2020;26(1):94–7.

    Article  PubMed  Google Scholar 

  45. Yang Y, Zhang WG, Li ZZ, Chen SL, Tian W. Anatomical and clinical study of a new mallet fracture classification method. Chin Med J (Engl). 2020;133(6):657–63.

    Article  Google Scholar 

  46. Bhandari M, Matta J, Ferguson T, Matthys G. Predictors of clinical and radiological outcome in patients with fractures of the acetabulum and concomitant posterior dislocation of the hip. J Bone Joint Surg Br. 2006;88(12):1618–24.

    Article  CAS  PubMed  Google Scholar 

  47. Saterbak AM, Marsh JL, Nepola JV, Brandser EA, Turbett T. Clinical failure after posterior wall acetabular fractures: the influence of initial fracture patterns. J Orthop Trauma. 2000;14(4):230–7.

    Article  CAS  PubMed  Google Scholar 

  48. Honkonen SE. Degenerative arthritis after tibial plateau fractures. J Orthop Trauma. 1995;9(4):273–7.

    Article  CAS  PubMed  Google Scholar 

  49. Weigel DP, Marsh JL. High-energy fractures of the tibial plateau. Knee function after longer follow-up. J Bone Joint Surg Am. 2002;84-A(9):1541–51.

    Article  Google Scholar 

  50. Bonar SK, Marsh JL. Unilateral external fixation for severe pilon fractures. Foot Ankle. 1993;14(2):57–64.

    Article  CAS  PubMed  Google Scholar 

  51. Kellam JF, Waddell JP. Fractures of the distal tibial metaphysis with intra-articular extension—the distal tibial explosion fracture. J Trauma. 1979;19:593–601.

    Article  CAS  PubMed  Google Scholar 

  52. Marsh JL, Weigel DP, Dirschl DR. Tibial plafond fractures. How do these ankles function over time? J Bone Joint Surg Am. 2003;85-A(2):287–95.

    Article  Google Scholar 

  53. Buckwalter JA, Anderson DD, Brown TD, Tochigi Y, Martin JA. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage. 2013;4:286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goetz JE, Fredericks D, Petersen E, Rudert MJ, Baer T, Swanson E, et al. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(10):1797–805.

    Article  CAS  Google Scholar 

  55. Anderson DD, Van Hofwegen C, Marsh JL, Brown TD. Is elevated contact stress predictive of post-traumatic osteoarthritis for imprecisely reduced tibial plafond fractures? J Orthop Res. 2011;29(1):33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Goreham-Voss CM, McKinley TO, Brown TD. A finite element exploration of cartilage stress near an articular incongruity during unstable motion. J Biomech. 2007;40(15):3438–47.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brown TD, Anderson DD, Nepola JV, RJ RJS, Pedersen DR, Brand RA. Contact stress aberrations following imprecise reduction of simple tibial plateau fractures. J Orthop Res. 1988;6:851–62.

    Article  CAS  PubMed  Google Scholar 

  58. Anderson DD, Bell AL, Gaffney MB, Imbriglia JE. Contact stress distributions in malreduced intraarticular distal radius fractures. J Orthop Trauma. 1996;10(5):331–7.

    Article  CAS  PubMed  Google Scholar 

  59. Kern AM, Anderson DD. Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction. J Biomech. 2015;48(12):3427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beardsley CL, Anderson DD, Marsh JL, Brown TD. Interfragmentary surface area as an index of comminution severity in cortical bone impact. J Orthop Res. 2005;23(3):686–90.

    Article  PubMed  Google Scholar 

  61. Li W, Anderson DD, Goldsworthy JK, Marsh JL, Brown TD. Patient-specific finite element analysis of chronic contact stress exposure after intraarticular fracture of the tibial plafond. J Orthop Res. 2008;26(8):1039–45.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Anderson DD, Mosqueda T, Thomas T, Hermanson EL, Brown TD, Marsh JL. Quantifying tibial plafond fracture severity: absorbed energy and fragment displacement agree with clinical rank ordering. J Orthop Res. 2008;26(8):1046–52.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP, et al. Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol. 2006;5(2–3):82–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tochigi Y, Rudert MJ, McKinley TO, Pedersen DR, Brown TD. Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle incongruity. J Orthop Res. 2008;26(9):1186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thomas TP, Anderson DD, Willis AR, Liu P, Marsh JL, Brown TD. ASB Clinical Biomechanics Award Paper 2010 virtual pre-operative reconstruction planning for comminuted articular fractures. Clin Biomech. 2011;26(2):109–15.

    Article  Google Scholar 

  66. Tochigi Y, Buckwalter JA, Brown TD. Toward improved clinical relevance of cartilage insult models in the rabbit knee: surgical access to the habitual weight-bearing region. Iowa Orthop J. 2013;33:196–201.

    PubMed  PubMed Central  Google Scholar 

  67. Ramakrishnan P, Hecht BA, Pedersen DR, Lavery MR, Maynard J, Buckwalter JA, et al. Oxidant conditioning protects cartilage from mechanically induced damage. J Orthop Res. 2010;28(7):914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res. 2010;28(8):1057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO. N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am. 2009;91(8):1890–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Beecher BR, Martin JA, Pedersen DR, Heiner AD, Buckwalter JA. Antioxidants block cyclic loading induced chondrocyte death. Iowa Orthop J. 2007;27:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xiao H, Wu M, Shao F, Guan G, Huang B, Tan B, et al. N-acetyl-L-cysteine protects the enterocyte against oxidative damage by modulation of mitochondrial function. Mediat Inflamm. 2016;2016:8364279.

    Article  CAS  Google Scholar 

  72. Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA. Injurious loading of articular cartilage compromises chondrocyte respiratory function. Arthritis Rheumatol. 2016;68(3):662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tochigi Y, Buckwalter JA, Martin JA, Hillis SL, Zhang P, Vaseenon T, et al. Distribution and progression of chondrocyte damage in a whole-organ model of human ankle intra-articular fracture. J Bone Joint Surg Am. 2011;93(6):533–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis. 2007;18(3):215–20.

    Article  PubMed  Google Scholar 

  75. Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED. Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol. 2008;209(1):243–53.

    Article  CAS  PubMed  Google Scholar 

  76. Ravikumar R, McEwen ML, Springer JE. Post-treatment with the cyclosporin derivative, NIM811, reduced indices of cell death and increased the volume of spared tissue in the acute period following spinal cord contusion. J Neurotrauma. 2007;24(10):1618–30.

    Article  PubMed  Google Scholar 

  77. Sullivan PG, Rabchevsky AG, Hicks RR, Gibson TR, Fletcher-Turner A, Scheff SW. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience. 2000;101(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  78. Jang K, Buckwalter J, Martin J. Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res. 2014;32:448–54.

    Article  CAS  PubMed  Google Scholar 

  79. Sauter E, Buckwalter JA, McKinley TO, Martin JA. Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res. 2012;30(4):593–8.

    Article  CAS  PubMed  Google Scholar 

  80. Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 2002;3(5):257–64.

    Article  CAS  PubMed  Google Scholar 

  81. Buckwalter JA, Lane NE. Aging, sports and osteoarthritis. Sports Med Arth Rev. 1996;4:276–87.

    Article  Google Scholar 

  82. Martin JA, Buckwalter JA. Articular cartilage aging and degeneration. Sports Med Arth Rev. 1996;4:263–75.

    Article  Google Scholar 

  83. Martin JA, Brown TD, Heiner AD, Buckwalter JA. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res. 2004;(427 Suppl):S96–103.

    Google Scholar 

  84. Aigner T, Haag J, Martin J, Buckwalter J. Osteoarthritis: aging of matrix and cells—going for a remedy. Curr Drug Targets. 2007;8(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  85. Martin JA, Brown T, Heiner A, Buckwalter JA. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence. Biorheology. 2004;41(3–4):479–91.

    CAS  PubMed  Google Scholar 

  86. Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin JA, Klingelhutz AJ, Moussavi-Harami F, Buckwalter JA. Effects of oxidative damage and telomerase activity on human articular cartilage chondrocyte senescence. J Gerontol A Biol Sci Med Sci. 2004;59(4):324–37.

    Article  PubMed  Google Scholar 

  88. Harbo M, Delaisse JM, Kjaersgaard-Andersen P, Soerensen FB, Koelvraa S, Bendix L. The relationship between ultra-short telomeres, aging of articular cartilage and the development of human hip osteoarthritis. Mech Ageing Dev. 2013;134(9):367–72.

    Article  CAS  PubMed  Google Scholar 

  89. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burton DG, Krizhanovsky V. Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 2014;71(22):4373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin JA, Buckwalter JA. Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci. 2001;56(4):B172–9.

    Article  CAS  PubMed  Google Scholar 

  92. Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: a general overview. Cancers (Basel). 2020;12(3):558.

    Article  CAS  Google Scholar 

  93. Fragkiadaki P, Nikitovic D, Kalliantasi K, Sarandi E, Thanasoula M, Stivaktakis PD, et al. Telomere length and telomerase activity in osteoporosis and osteoarthritis. Exp Ther Med. 2020;19(3):1626–32.

    CAS  PubMed  Google Scholar 

  94. Mosquera A, Rego-Perez I, Blanco FJ, Fernandez JL. Leukocyte telomere length in patients with radiographic knee osteoarthritis. Environ Mol Mutagen. 2019;60(3):298–301.

    Article  CAS  PubMed  Google Scholar 

  95. Brouillette MJ, Ramakrishnan PS, Wagner VM, Sauter EE, Journot BJ, McKinley TO, et al. Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol. 2014;13(3):565–72.

    Article  CAS  PubMed  Google Scholar 

  96. Goetz JE, Coleman MC, Fredericks DC, Petersen E, Martin JA, McKinley TO, et al. Time-dependent loss of mitochondrial function precedes progressive histologic cartilage degeneration in a rabbit meniscal destabilization model. J Orthop Res. 2017;35(3):590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Moussavi-Harami F, Duwayri Y, Martin JA, Moussavi-Harami F, Buckwalter JA. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. Iowa Orthop J. 2004;24:15–20.

    PubMed  PubMed Central  Google Scholar 

  98. Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P. Oxidative stress induces senescence in chondrocytes. J Orthop Res. 2011;29(7):1114–20.

    Article  CAS  PubMed  Google Scholar 

  99. Erusalimsky JD. Oxidative stress, telomeres and cellular senescence: what non-drug interventions might break the link? Free Radic Biol Med. 2020;150:87–95.

    Article  CAS  PubMed  Google Scholar 

  100. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23:775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zheng W, Feng Z, You S, Zhang H, Tao Z, Wang Q, et al. Fisetin inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int Immunopharmacol. 2017;45:135–47.

    Article  CAS  PubMed  Google Scholar 

  102. Coleman MC, Buckwalter JA, Martin JA. Potential mechanisms of PTA: oxidative stress. In: Olson SA, Guilak F, editors. Post-traumatic arthritis. New York: Springer; 2015. p. 211–9.

    Chapter  Google Scholar 

  103. Coleman MC, Goetz JE, Brouillette MJ, Seol D, Willey MC, Petersen EB, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med. 2018;10(427):eaan5372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J. 2020;287(12):2418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chandra A, Lagnado AB, Farr JN, Monroe DG, Park S, Hachfeld C, et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J Bone Miner Res. 2020;35(6):1119–31.

    Article  CAS  PubMed  Google Scholar 

  106. Dicks A, Wu CL, Steward N, Adkar SS, Gersbach CA, Guilak F. Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res Ther. 2020;11(1):66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jiang Z, Yu S, Lin H, Bi R. Expression and function of cartilage-derived pluripotent cells in joint development and repair. Stem Cell Res Ther. 2020;11(1):111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Studer D, Cavalli E, Formica FA, Kuhn GA, Salzmann G, Mumme M, et al. Human chondroprogenitors in alginate-collagen hybrid scaffolds produce stable cartilage in vivo. J Tissue Eng Regen Med. 2017;11(11):3014–26.

    Article  CAS  PubMed  Google Scholar 

  109. Seol D, McCabe DJ, Choe H, Zheng H, Yu Y, Jang K, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum. 2012;64(11):3626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, et al. Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin Arthritis Rheum. 2020;50(2):198–208.

    Article  PubMed  Google Scholar 

  111. Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Use of recombinant human stromal cell-derived factor 1alpha-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full-thickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis Rheumatol. 2015;67(5):1274–85.

    Article  CAS  PubMed  Google Scholar 

  112. Hoshiyama Y, Otsuki S, Oda S, Kurokawa Y, Nakajima M, Jotoku T, et al. Chondrocyte clusters adjacent to sites of cartilage degeneration have characteristics of progenitor cells. J Orthop Res. 2015;33(4):548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bothe F, Deubel AK, Hesse E, Lotz B, Groll J, Werner C, et al. Treatment of focal cartilage defects in minipigs with zonal chondrocyte/mesenchymal progenitor cell constructs. Int J Mol Sci. 2019;20(3):653.

    Google Scholar 

  114. Seol D, Yu Y, Choe H, Jang K, Brouillette MJ, Zheng H, et al. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage. Tissue Eng Part A. 2014;20(13–14):1807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou C, Zheng H, Buckwalter JA, Martin JA. Enhanced phagocytic capacity endows chondrogenic progenitor cells with a novel scavenger function within injured cartilage. Osteoarthr Cartil. 2016;24(9):1648–55.

    Article  CAS  Google Scholar 

  116. Montgomery JB, Steadman JR. Rehabilitation of the injured knee. Clin Sports Med. 1985;4(2):333–43.

    Article  CAS  PubMed  Google Scholar 

  117. Buckwalter JA. Effects of early motion on healing of musculoskeletal tissues. Hand Clin. 1996;12(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  118. Buckwalter JA. Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J. 1995;15:29–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Buckwalter JA, Woo L-Y. Effects of repetitive loading and motion on the musculoskeletal tissues. In: DeLee JC, Drez D, editors. Orthopaedic sports medicine: principles and practice. Philadelphia: Saunders; 1994. p. 60–72.

    Google Scholar 

  120. Baczkowicz D, Skiba G, Falkowski K, Domaszewski P, Selkow N. Effects of immobilization and re-mobilization on knee joint arthrokinematic motion quality. J Clin Med. 2020;9(2):451.

    Google Scholar 

  121. Vincent TL, Wann AKT. Mechanoadaptation: articular cartilage through thick and thin. J Physiol. 2019;597(5):1271–81.

    Article  CAS  PubMed  Google Scholar 

  122. Pita JC, Muller FJ, Manicourt DH, Buckwalter JA, Ratcliff A. Early changes in experimental osteoarthritis and joint disuse atrophy. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC, editors. Articular cartilage and osteoarthritis. New York: Raven; 1992. p. 455–69.

    Google Scholar 

  123. Atluri K, Brouillette MJ, Seol D, Khorsand B, Sander E, Salem AK, et al. Sulfasalazine resolves joint stiffness in a rabbit model of arthrofibrosis. J Orthop Res. 2020;38(3):629–38.

    Article  CAS  PubMed  Google Scholar 

  124. Bedigrew KM, Patzkowski JC, Wilken JM, Owens JG, Blanck RV, Stinner DJ, et al. Can an integrated orthotic and rehabilitation program decrease pain and improve function after lower extremity trauma? Clin Orthop Relat Res. 2014;472(10):3017–25.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hsu JR, Owens JG, DeSanto J, Fergason JR, Kuhn KM, Potter BK, et al. Patient response to an integrated orthotic and rehabilitation initiative for traumatic injuries: the PRIORITI-MTF study. J Orthop Trauma. 2017;31(Suppl 1):S56–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Buckwalter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, D. et al. (2022). Early OA Following Synovial Joint Fracture. In: Lattermann, C., Madry, H., Nakamura, N., Kon, E. (eds) Early Osteoarthritis. Springer, Cham. https://doi.org/10.1007/978-3-030-79485-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79485-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79484-2

  • Online ISBN: 978-3-030-79485-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics