Skip to main content

The Failed Rotator Cuff: Diagnosis and Management—New Concepts in Biology of Repair

  • Chapter
  • First Online:
The Failed Rotator Cuff

Abstract

Despite advances in surgical techniques, recurrent tears of the rotator cuff following repair remain a major challenge. As the endogenous healing potential of the repaired tendon appears to be limited, augmentation techniques using biologic adjuvants have garnered recent attention, including the application of growth factors, platelet-rich plasma (PRP), or mesenchymal stem cells (MSCs). Although bone marrow still remains the traditional source for MSCs used for biologic augmentation of rotator cuff repair, recent studies have highlighted subacromial bursal tissue to be an alternative, easily accessible, inexpensive source of MSCs.

Despite strong in vitro results regarding the stimulating effects of PRP on tenocytes and myocytes, clinical outcomes following PRP application have been inconsistent. Additionally, reported clinical outcomes of concentrated bone marrow aspirate (BMAC) applications should be interpreted with caution, with the actual clinical efficacy of BMAC still remaining a matter of debate. In vitro studies of human subacromial bursa-derived cells (SBDCs) have shown strong results, demonstrating superior differentiation and proliferation potential compared to BMAC. Thus, SBDCs may be a promising biological augment for rotator cuff surgery, however, clinical outcomes following repair augmentation are yet to be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galatz L, Ball C, Teefey S. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86:219–24.

    Article  PubMed  Google Scholar 

  2. Bigliani LU, Cordasco FA, McIlveen SJ, Musso ES. Operative treatment of failed repairs of the rotator cuff. J Bone Joint Surg Am. 1992;74(10):1505–15.

    Article  CAS  PubMed  Google Scholar 

  3. Nho SJ, Delos D, Yadav H, et al. Biomechanical and biologic augmentation for the treatment of massive rotator cuff tears. Am J Sports Med. 2010;38(3):619–29.

    Article  PubMed  Google Scholar 

  4. Bennett WF. Arthroscopic repair of massive rotator cuff tears: a prospective cohort with 2- to 4-year follow-up. Arthroscopy. 2003;19(4):380–90.

    Article  PubMed  Google Scholar 

  5. Gamradt SC, Gallo RA, Adler RS, et al. Vascularity of the supraspinatus tendon three months after repair: characterization using contrast-enhanced ultrasound. J Shoulder Elb Surg. 2010;19(1):73–80.

    Article  Google Scholar 

  6. Dyrna F, Zakko P, Pauzenberger L, McCarthy MB, Mazzocca AD, Dyment NA. Human subacromial bursal cells display superior engraftment versus bone marrow stromal cells in murine tendon repair. Am J Sports Med. 2018;46(14):3511–20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dyment NA, Galloway JL. Regenerative biology of tendon: mechanisms for renewal and repair. Curr Mol Biol Rep. 2015;1(3):124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One. 2014;9(4):e96113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38(9):1811–8.

    Article  PubMed  Google Scholar 

  10. Imam MA, Holton J, Horriat S, et al. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology. SICOT J. 2017;3:58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song N, Armstrong AD, Li F, Ouyang H, Niyibizi C. Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering. Tissue Eng Part A. 2014;20(1–2):239–49.

    Article  CAS  PubMed  Google Scholar 

  12. Steinert AF, Kunz M, Prager P, et al. Characterization of bursa subacromialis-derived mesenchymal stem cells. Stem Cell Res Ther. 2015;6:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T. Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med. 2013;41(3):657–68.

    Article  PubMed  Google Scholar 

  14. Lubkowska A, Dolegowska B, Banfi G. Growth factor content in PRP and their applicability in medicine. J Biol Regul Homeost Agents. 2012;26:3S–22S.

    CAS  PubMed  Google Scholar 

  15. Carr JB 2nd, Rodeo SA. The role of biologic agents in the management of common shoulder pathologies: current state and future directions. J Shoulder Elb Surg. 2019;28(11):2041–52.

    Article  Google Scholar 

  16. Mazzocca AD, McCarthy MB, Chowaniec DM, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am. 2012;94(4):308–16.

    Article  PubMed  Google Scholar 

  17. Kia C, Baldino J, Bell R, Ramji A, Uyeki C, Mazzocca A. Platelet-rich plasma: review of current literature on its use for tendon and ligament pathology. Curr Rev Musculoskelet Med. 2018;11(4):566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Wang JHC. Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med. 2010;38(12):2477–86.

    Article  PubMed  Google Scholar 

  19. Xiong G, Lingampalli N, Koltsov JCB, et al. Men and women differ in the biochemical composition of platelet-rich plasma. Am J Sports Med. 2018;46(2):409–19.

    Article  PubMed  Google Scholar 

  20. Hurley ET, Lim Fat D, Moran CJ, Mullett H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am J Sports Med. 2019;47(3):753–61.

    Article  PubMed  Google Scholar 

  21. Warth RJ, Dornan GJ, James EW, Horan MP, Millett PJ. Clinical and structural outcomes after arthroscopic repair of full-thickness rotator cuff tears with and without platelet-rich product supplementation: a meta-analysis and meta-regression. Arthroscopy. 2015;31(2):306–20.

    Article  PubMed  Google Scholar 

  22. Saltzman BM, Jain A, Campbell KA, et al. Does the use of platelet-rich plasma at the time of surgery improve clinical outcomes in arthroscopic rotator cuff repair when compared with control cohorts? A systematic review of meta-analyses. Arthroscopy. 2015;32(5):906–18.

    Article  PubMed  Google Scholar 

  23. Angeline ME, Ma R, Pascual-Garrido C, et al. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model. Am J Sports Med. 2014;42(1):27–34.

    Article  PubMed  Google Scholar 

  24. Bedi A, Fox AJ, Kovacevic D, Deng XH, Warren RF, Rodeo SA. Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair. Am J Sports Med. 2010;38(2):308–17.

    Article  PubMed  Google Scholar 

  25. Bedi A, Kovacevic D, Hettrich C, et al. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J Shoulder Elb Surg. 2010;19(3):384–91.

    Article  Google Scholar 

  26. Beyth S, Mosheiff R, Safran O, Daskal A, Liebergall M. Cigarette smoking is associated with a lower concentration of CD105(+) bone marrow progenitor cells. Bone Marrow Res. 2015;2015:914935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Curtis L. Nutritional research may be useful in treating tendon injuries. Nutrition. 2016;32(6):617–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  29. Ellera Gomes JL, da Silva RC, Silla LM, Abreu MR, Pellanda R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):373–7.

    Article  PubMed  Google Scholar 

  30. Harada GK, Arshi A, Fretes N, et al. Preoperative vitamin D deficiency is associated with higher postoperative complications in arthroscopic rotator cuff repair. J Am Acad Orthop Surg Glob Res Rev. 2019;3(7):e075.

    PubMed  PubMed Central  Google Scholar 

  31. Hernigou J, Picard L, Alves A, Silvera J, Homma Y, Hernigou P. Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop. 2014;38(11):2377–84.

    Article  PubMed  Google Scholar 

  32. Hernigou P, Beaujean F. Abnormalities in the bone marrow of the iliac crest in patients who have osteonecrosis secondary to corticosteroid therapy or alcohol abuse. J Bone Joint Surg Am. 1997;79(7):1047–53.

    Article  CAS  PubMed  Google Scholar 

  33. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am. 2006;88:322–7.

    Article  PubMed  Google Scholar 

  34. Hirose K, Kondo S, Choi HR, Mishima S, Iwata H, Ishiguro N. Spontaneous healing process of a supraspinatus tendon tear in rabbits. Arch Orthop Trauma Surg. 2004;124(6):374–7.

    Article  PubMed  Google Scholar 

  35. Imam MA, Holton J, Ernstbrunner L, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop. 2017;41(11):2213–20.

    Article  PubMed  Google Scholar 

  36. Kim SJ, Song DH, Park JW, Park S, Kim SJ. Effect of bone marrow aspirate concentrate-platelet-rich plasma on tendon-derived stem cells and rotator cuff tendon tear. Cell Transplant. 2017;26(5):867–78.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lamo-Espinosa JM, Mora G, Blanco JF, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2016;14(1):246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Liu XN, Yang C-J, Kim JE, et al. Enhanced tendon-to-bone healing of chronic rotator cuff tears by bone marrow aspirate concentrate in a rabbit model. Clin Orthop Surg. 2018;10(1):99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malavolta EA, Gracitelli MEC, Assuncao JH, Ferreira Neto AA, Bordalo-Rodrigues M, de Camargo OP. Clinical and structural evaluations of rotator cuff repair with and without added platelet-rich plasma at 5-year follow-up: a prospective randomized study. Am J Sports Med. 2018;46(13):3134–41.

    Article  PubMed  Google Scholar 

  40. Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38(7):1438–47.

    Article  PubMed  Google Scholar 

  41. McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res. 2009;27(8):1033–42.

    Article  CAS  PubMed  Google Scholar 

  42. McLain RF, Fleming JE, Boehm C, Muschler G. Aspiration of osteoprogenitor cells for augmenting spinal fusion: comparison of progenitor cell concentrations from the vertebral body and iliac crest. J Bone Joint Surg Am. 2005;87(12):2655–61.

    PubMed  Google Scholar 

  43. Milano G, Saccomanno MF, Careri S, Taccardo G, De Vitis R, Fabbriciani C. Efficacy of marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study. Arthroscopy. 2013;29(5):802–10.

    Article  PubMed  Google Scholar 

  44. Morikawa D, Johnson JD, Kia C, et al. Examining the potency of subacromial bursal cells as a potential augmentation for rotator cuff healing: an in vitro study. Arthroscopy. 2019;35(11):2978–88.

    Article  PubMed  Google Scholar 

  45. Morikawa D, Muench LN, Baldino JB, et al. Comparison of preparation techniques for isolating subacromial bursa-derived cells as a potential augment for rotator cuff repair. Arthroscopy. 2020;36(1):80–5.

    Article  PubMed  Google Scholar 

  46. Muschler G, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997;79(11):1699–709.

    Article  CAS  PubMed  Google Scholar 

  47. Muschler G, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002;395:66–80.

    Article  Google Scholar 

  48. Oh JH, Kim SH, Kim JH, Shin YH, Yoon JP, Oh CH. The level of vitamin D in the serum correlates with fatty degeneration of the muscles of the rotator cuff. J Bone Joint Surg Br. 2009;91(12):1587–93.

    Article  CAS  PubMed  Google Scholar 

  49. Patterson TE, Boehm C, Nakamoto C, et al. The efficiency of bone marrow aspiration for the harvest of connective tissue progenitors from the human iliac crest. J Bone Joint Surg Am. 2017;99(19):1673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  51. Randelli P, Arrigoni P, Ragone V, Aliprandi A, Cabitza P. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J Shoulder Elb Surg. 2011;20(4):518–28.

    Article  Google Scholar 

  52. Ryu KJ, Kim BH, Lee Y, Dan J, Kim JH. Low serum vitamin D is not correlated with the severity of a rotator cuff tear or Retear after arthroscopic repair. Am J Sports Med. 2015;43(7):1743–50.

    Article  PubMed  Google Scholar 

  53. Taniguchi N, Suenaga N, Oizumi N, et al. Bone marrow stimulation at the footprint of arthroscopic surface-holding repair advances cuff repair integrity. J Shoulder Elb Surg. 2015;24(6):860–6.

    Article  Google Scholar 

  54. Uhthoff H, Sarkar K. Surgical repair of rotator cuff ruptures - the importance of the subacromial Bursa. J Bone Joint Surg Br. 1991;73:399–401.

    Article  CAS  PubMed  Google Scholar 

  55. Yoshida R, Alaee F, Dyrna F, et al. Murine supraspinatus tendon injury model to identify the cellular origins of rotator cuff healing. Connect Tissue Res. 2016;57(6):507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao JG, Zhao L, Jiang YX, Wang ZL, Wang J, Zhang P. Platelet-rich plasma in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Arthroscopy. 2015;31(1):125–35.

    Article  PubMed  Google Scholar 

  57. Zhong W, Sumita Y, Ohba S, et al. In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. platelet-rich plasma. PLoS One. 2012;7(7):e40833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zumstein MA, Ladermann A, Raniga S, Schar MO. The biology of rotator cuff healing. Orthop Traumatol Surg Res. 2017;103(1S):S1–S10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas N. Muench .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muench, L.N., Berthold, D.P., Mazzocca, A.D. (2021). The Failed Rotator Cuff: Diagnosis and Management—New Concepts in Biology of Repair. In: Savoie III, F.H., Calvo, E., Mazzocca, A.D. (eds) The Failed Rotator Cuff. Springer, Cham. https://doi.org/10.1007/978-3-030-79481-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79481-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79480-4

  • Online ISBN: 978-3-030-79481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics