Skip to main content

Determination of Vehicle Type by Image Classification Methods for a Sample Traffic Intersection in Isparta Province

  • Conference paper
  • First Online:
Trends in Data Engineering Methods for Intelligent Systems (ICAIAME 2020)

Abstract

Today, technologies related to artificial intelligence are used in almost every area of life. Scientists are working to maximize the predictive accuracy of artificial intelligence. Thus, they aim to reduce human errors. They also aim to make human life more comfortable by using artificial intelligence technology. Artificial intelligence models are tried on various data sets, and various analyzes are carried out to increase accuracy. In this study, a data set of vehicle types was created at an intersection in Isparta city center. Classification studies were performed with Capsule Networks and Convolutional Neural Networks (CNN) on this data set. Besides, some parameters were changed, and the accuracy of the models was observed. The results are given in the form of a table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kayaalp, K., Süzen, A.A.: Derin Öğrenme ve Türkiye’deki Uygulamaları, p. 1. IKSAD International Publishing House, Basım sayısı, Yayın Yeri (2018)

    Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  3. Prasad, P.S., Pathak, R., Gunjan, V.K., Rao, H.R.: Deep learning based representation for face recognition. In ICCCE 2019, pp. 419–424. Springer, Singapore (2020)

    Google Scholar 

  4. Bashbaghi, S., Granger, E., Sabourin, R., Parchami, M.: Deep learning architectures for face recognition in video surveillance. In: Deep Learning in Object Detection and Recognition, pp. 133–154. Springer (2019)

    Google Scholar 

  5. Demır, A., Atıla, O., Şengür, A.: Deep learning and audio based emotion recognition. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1–6. IEEE, September 2019

    Google Scholar 

  6. Toğaçar, M., Ergen, B., Sertkaya, M.E.: Zatürre Hastalığının Derin Öğrenme Modeli ile Tespiti. Firat University J. Eng. 31(1) (2019)

    Google Scholar 

  7. Çalışır, S., Atay, R., Pehlivanoğlu, M.K., Duru, N.: Intrusion detection using machine learning and deep learning techniques. In: 2019 4th International Conference on Computer Science and Engineering (UBMK), pp. 656–660. IEEE, September 2019

    Google Scholar 

  8. Koşan, M.A., Benzer, R.: Siber Güvenlik Alanında Derin Öğrenme Yöntemlerinin Kullanımı (2019)

    Google Scholar 

  9. Kizrak, M.A., Bolat, B.: Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma. Bilişim Teknolojileri Dergisi 11(3), 263–286 (2018)

    Article  Google Scholar 

  10. Kınlı, F., Kıraç, F.: FashionCapsNet: clothing classification with capsule networks. Int. J. Inf. Technol. 13(1) (2020)

    Google Scholar 

  11. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural İnformation Processing Systems, pp. 3856–3866 (2017)

    Google Scholar 

  12. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming autoencoders. In: International Conference on Artificial Neural Networks, pp. 44–51. Springer, Heidelberg, June 2011

    Google Scholar 

  13. Shvai, N., Hasnat, A., Meicler, A., Nakib, A.: Accurate classification for automatic vehicle-type recognition based on ensemble classifiers. IEEE Trans. Intell. Transp. Syst. (2019)

    Google Scholar 

  14. Zhang, Z., Zhang, D., Wei, H.: Vehicle type recognition using capsule network. In: 2019 Chinese Control And Decision Conference (CCDC), pp. 2944–2948. IEEE, June 2019

    Google Scholar 

  15. Körez, A., Barışcı, N.: İnsansız Hava aracı (İHA) Görüntülerindeki Nesnelerin Kapsül Ağları Kullanılarak Sınıflandırılması (2019)

    Google Scholar 

  16. Mekhalfi, M.L., Bejiga, M.B., Soresina, D., Melgani, F., Demir, B.: Capsule networks for object detection in UAV imagery. Remote Sens. 11(14), 1694 (2019)

    Article  Google Scholar 

  17. Chen, R., Jalal, M.A., Mihaylova, L., Moore, R.K.: Learning capsules for vehicle logo recognition. In: 2018 21st International Conference on Information Fusion (FUSION), pp. 565–572. IEEE, July 2018

    Google Scholar 

  18. Chen, Y., Zhu, W., Yao, D., Zhang, L.: Vehicle type classification based on convolutional neural network. In: 2017 Chinese Automation Congress (CAC), pp. 1898–1901. IEEE, October 2017

    Google Scholar 

  19. Huo, Z., Xia, Y., Zhang, B.: Vehicle type classification and attribute prediction using multi-task RCNN. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISPBMEI), pp. 564–569. IEEE, October 2016

    Google Scholar 

  20. Şeker, A., Diri, B., Balık, H.H.: Derin öğrenme yöntemleri ve uygulamaları hakkında bir inceleme. Gazi Mühendislik Bilimleri Dergisi (GMBD) 3(3), 47–64 (2017)

    Google Scholar 

  21. Tümen, V., Söylemez, Ö.F., Ergen, B.: Facial emotion recognition on a dataset using convolutional neural network. In: 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1–5. IEEE, September 2017

    Google Scholar 

  22. Bilgen, I., Saraç, Ö.S.: Gene regulatory network inference from gene expression dataset using autoencoder. In: 2018 26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE, May 2018

    Google Scholar 

  23. Beşer, F., Kizrak, M.A., Bolat, B., Yildirim, T.: Recognition of sign language using capsule networks. In: 2018 26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE, May 2018

    Google Scholar 

  24. Gülcü, A., Kuş, Z.: Konvolüsyonel Sinir Ağlarında Hiper-Parametre Optimizasyonu Yöntemlerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 7(2), 503–522 (2019)

    Article  Google Scholar 

  25. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747(2016)

  26. Çarkacı, N.: Derin Öğrenme Uygulamalarında En Sık Kullanılan Hiperparametreler (2018). Erişim Tarihi 29 May 2020. https://medium.com/deeplearning-turkiye/derin-ogrenme-uygulamalarinda-en-sikkullanilan-hiper-parametrele r-ece8e9125c4

  27. Kutlu, N.: Biyoistatistik Temelli Bilimsel Araştırmalarda Derin Öğrenme Uygulamaları, Yüksek Lisans Tezi, Lefkoşa (2018)

    Google Scholar 

  28. Kurt, F.: Evrişimli Sinir Ağlarında Hiper Parametrelerin Etkisinin İncelenmesi, Yüksek Lisans Tezi (2018)

    Google Scholar 

  29. Tan, Z.: Derin Öğrenme Yardımıyla Araç Sınıflandırma, Yüksek Lisans Tezi (2019)

    Google Scholar 

  30. Šimundić, A.M.: Measures of diagnostic accuracy: basic definitions. Ejifcc 19(4), 203 (2009)

    Google Scholar 

  31. Zhu, W., Zeng, N., Wang, N.: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. In: NESUG Proceedings: Health Care and Life Sciences, Baltimore, Maryland, vol. 19, p. 67 (2010)

    Google Scholar 

  32. Lalkhen, A.G., McCluskey, A.: Clinical tests: sensitivity and specificity. Continuing Educ. Anaesthesia Critical Care Pain 8(6), 221–223 (2008)

    Article  Google Scholar 

  33. Eusebi, P.: Diagnostic accuracy measures. Cerebrovascular Diseases 36(4), 267–272 (2013)

    Article  Google Scholar 

  34. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 6 (2020)

    Article  Google Scholar 

  35. Taş, B.: Roc Eğrisi ve Eğri Altında Kalan Alan (Auc) (2019). Erişim Tarihi 29 May 2020. https://medium.com/@bernatas/roc-e%C4%9Frisi-vee%C4%9Fri-alt%C4%B1nda-kalan-alan-auc-97b058e8e0cf

Download references

Acknowledgment

We would like to thank the Isparta Directorate of Transportation and Traffic Services for providing the data set that constitutes a resource for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatmanur Ateş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ateş, F., Salman, O., Şenol, R., Aksoy, B. (2021). Determination of Vehicle Type by Image Classification Methods for a Sample Traffic Intersection in Isparta Province. In: Hemanth, J., Yigit, T., Patrut, B., Angelopoulou, A. (eds) Trends in Data Engineering Methods for Intelligent Systems. ICAIAME 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-79357-9_42

Download citation

Publish with us

Policies and ethics