Skip to main content

2000s: Structural Heart Disease

  • Chapter
  • First Online:
The Mayo Clinic Cardiac Catheterization Laboratory

Abstract

The history of interventional therapeutic cardiology can be regarded as a set of overlapping eras initiated by a flurry of innovation, followed by rapid diffusion of new technologies and procedures. Such eras include the development of balloon angioplasty, the treatment of acute myocardial infarction, the advent of coronary stents, particularly drug-eluting stents, and more recently the development of procedures designed to treat macro-cardiac structures. Going to work in the heart, cardiologists took their knowledge and enthusiasm for balloon technology and applied it to aortic and mitral valve disease. While success in the aortic position was limited, percutaneous balloon mitral valvuloplasty rapidly became standard of care for carefully selected patients with rheumatic mitral stenosis. The development of transcutaneous heart valve technology for the treatment of calcific aortic stenosis resulted in a permanent transformation of the treatment of cardiac patients. Despite initial continued significant resistance, transcutaneous aortic valve replacement (TAVR) is now commonplace and the preferred treatment for many patient subsets. The development of TAVR followed the familiar timeline: An innovation initially regarded not feasible and perhaps not safe (“crazy”) became fully developed through innovation funded by medical device companies, validated in prospective studies, and applied worldwide. Now, rather than being considered bizarre or inappropriate, we wonder “why didn’t we think of that?” Perhaps the answer lies in ex arca or out-of-the-box thinking when approaching patient problems. Innovation in structural heart interventions continues rapidly, and now encompasses all four heart valves, with the development of procedures using off-the-shelf technology, as well as innovative novel valve designs. Pioneers, who often do not know what lays over the horizon, industry partners, skilled operators, and clinical researchers are all necessary to make this ecosystem work. The future is bright, and we expect patients with structural heart disease to look forward to more minimally invasive and hybrid technologies brought to bear to their problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ross J, Braunwald E, Morrow AG. Transseptal left atrial puncture: new technique for the measurement of left atrial pressure in man. Am J Cardiol. 1959;3(5):653–5.

    Article  PubMed  Google Scholar 

  2. Ross J. Transseptal left heart catheterization. J Am Coll Cardiol. 2008;51(22):2107–15.

    Article  PubMed  Google Scholar 

  3. Inoue K, Owaki T, Nakamura T, Kitamura F, Miyamoto N. Clinical application of transvenous mitral commissurotomy by a new balloon catheter. J Thorac Cardiovasc Surg. 1984;87(3):394–402.

    Article  CAS  PubMed  Google Scholar 

  4. Cribier A, Rath PC, Letac B. Percutaneous mitral valvotomy with a metal dilatator. Lancet. 1997;349(9066):1667.

    Article  CAS  PubMed  Google Scholar 

  5. Rihal CS, Nishimura RA, Holmes DR Jr. Percutaneous balloon mitral valvuloplasty: the learning curve. Am Heart J. 1991;122(6):1750–6.

    Article  CAS  PubMed  Google Scholar 

  6. Abascal VM, Wilkins GT, O'Shea JP, Choong CY, Palacios IF, Thomas JD, et al. Prediction of successful outcome in 130 patients undergoing percutaneous balloon mitral valvotomy. Circulation. 1990;82(2):448–56.

    Article  CAS  PubMed  Google Scholar 

  7. Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Heart. 1988;60(4):299–308.

    Article  CAS  Google Scholar 

  8. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):e57–185.

    Article  PubMed  Google Scholar 

  9. Cannan CR, Nishimura RA, Reeder GS, Ilstrup DR, Larson DR, Holmes DR, et al. Echocardiographic assessment of commissural calcium: a simple predictor of outcome after percutaneous mitral balloon valvotomy. J Am Coll Cardiol. 1997;29(1):175–80.

    Article  CAS  PubMed  Google Scholar 

  10. Ommen SR, Nishimura RA, Grill DE, Holmes DR Jr, Rihal CS. Comparison of long-term results of percutaneous mitral balloon valvotomy with closed transventricular mitral commissurotomy at a single north American institution. Am J Cardiol. 1999;84(5):575–7.

    Article  CAS  PubMed  Google Scholar 

  11. Turi ZG, Reyes VP, Raju BS, Raju AR, Kumar DN, Rajagopal P, et al. Percutaneous balloon versus surgical closed commissurotomy for mitral stenosis. A prospective, randomized trial. Circulation. 1991;83(4):1179–85.

    Article  CAS  PubMed  Google Scholar 

  12. Reyes VP, Raju BS, Wynne J, Stephenson LW, Raju R, Fromm BS, et al. Percutaneous balloon valvuloplasty compared with open surgical commissurotomy for mitral stenosis. N Engl J Med. 1994;331(15):961–7.

    Article  CAS  PubMed  Google Scholar 

  13. Powell BD, Holmes DR, Nishimura RA, Rihal CS. Calcium embolism of the coronary arteries after percutaneous mitral balloon valvuloplasty. Mayo Clin Proc. 2001;76(7):753–7.

    Article  CAS  PubMed  Google Scholar 

  14. ROSS J, Braunwald E. Aortic stenosis. Circulation. 1968;38(1s5):V-61–V-7.

    Article  Google Scholar 

  15. Passik CS, Ackermann DM, Pluth JR, Edwards WD. Temporal changes in the causes of aortic stenosis: a surgical pathologic study of 646 cases. Mayo Clin Proc. 1987;62(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  16. O'Keefe JH Jr, Vlietstra RE, Bailey KR, Holmes DR Jr. Natural history of candidates for balloon aortic valvuloplasty. Mayo Clin Proc. 1987;62(11):986–91.

    Article  PubMed  Google Scholar 

  17. Cribier A, Savin T, Saoudi N, Rocha P, Berland J, Letac B. Percutaneous transluminal valvuloplasty of acquired aortic stenosis in elderly patients: an alternative to valve replacement? Lancet. 1986;1(8472):63–7.

    Article  CAS  PubMed  Google Scholar 

  18. Andersen HR, Knudsen LL, Hasenkam JM. Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur Heart J. 1992;13(5):704–8.

    Article  CAS  PubMed  Google Scholar 

  19. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–607.

    Article  CAS  PubMed  Google Scholar 

  20. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.

    Article  CAS  PubMed  Google Scholar 

  21. Adams DH, Popma JJ, Reardon MJ, Yakubov SJ, Coselli JS, Deeb GM, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370(19):1790–8.

    Article  CAS  PubMed  Google Scholar 

  22. Popma JJ, Adams DH, Reardon MJ, Yakubov SJ, Kleiman NS, Heimansohn D, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol. 2014;63(19):1972–81.

    Article  PubMed  Google Scholar 

  23. Meredith IT, Worthley SG, Whitbourn RJ, Antonis P, Montarello JK, Newcomb AE, et al. Transfemoral aortic valve replacement with the repositionable Lotus valve system in high surgical risk patients: the REPRISE I study. EuroIntervention. 2014;9(11):1264–70.

    Article  PubMed  Google Scholar 

  24. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.

    Article  CAS  PubMed  Google Scholar 

  25. Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Søndergaard L, Mumtaz M, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376(14):1321–31.

    Article  PubMed  Google Scholar 

  26. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705.

    Article  PubMed  Google Scholar 

  27. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15.

    Article  PubMed  Google Scholar 

  28. Schaff HV. Transcatheter aortic-valve implantation — at what price? N Engl J Med. 2011;364(23):2256–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kapadia SR, Kodali S, Makkar R, Mehran R, Lazar RM, Zivadinov R, et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol. 2017;69(4):367–77.

    Article  PubMed  Google Scholar 

  30. Søndergaard L, Ihlemann N, Capodanno D, Jørgensen TH, Nissen H, Kjeldsen BJ, et al. Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. J Am Coll Cardiol. 2019;73(5):546–53.

    Article  PubMed  Google Scholar 

  31. Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, De Backer O, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med. 2015;373(21):2015–24.

    Article  CAS  PubMed  Google Scholar 

  32. Généreux P, Head Stuart J, Hahn R, Daneault B, Kodali S, Williams Mathew R, et al. Paravalvular leak after transcatheter aortic valve replacement. J Am Coll Cardiol. 2013;61(11):1125–36.

    Article  PubMed  Google Scholar 

  33. Alkhouli M, Sarraf M, Maor E, Sanon S, Cabalka A, Eleid MF, et al. Techniques and outcomes of percutaneous aortic paravalvular leak closure. JACC Cardiovasc Interv. 2016;9(23):2416–26.

    Article  PubMed  Google Scholar 

  34. Eleid MF, Cabalka AK, Malouf JF, Sanon S, Hagler DJ, Rihal CS. Techniques and outcomes for the treatment of paravalvular leak. Circ Cardiovasc Interv. 2015;8(8):e001945.

    Article  PubMed  Google Scholar 

  35. Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of percutaneous paravalvular leak closure. J Am Coll Cardiol Intv. 2012;5(2):121–30.

    Article  Google Scholar 

  36. Gössl M, Rihal CS. Percutaneous treatment of aortic and mitral valve paravalvular regurgitation. Curr Cardiol Rep. 2013;15(8):388.

    Article  PubMed  Google Scholar 

  37. Lloyd JW, Rihal CS, Eleid MF. Hemodynamics rounds: hemodynamics of mitral valve interventions. Catheter Cardiovasc Interv. 2020;96(3):712–24.

    Article  PubMed  Google Scholar 

  38. Maor E, Raphael CE, Panaich SS, Reeder GS, Nishimura RA, Nkomo VT, et al. Acute changes in left atrial pressure after MitraClip are associated with improvement in 6-minute walk distance. Circ Cardiovasc Interv. 2017;10(4):e004856.

    Article  CAS  PubMed  Google Scholar 

  39. Stone GW, Lindenfeld J, Abraham WT, Kar S, Lim DS, Mishell JM, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018;379(24):2307–18.

    Article  PubMed  Google Scholar 

  40. Pilote L, Hüttner I, Marpole D, Sniderman A. Stiff left atrial syndrome. Can J Cardiol. 1988;4(6):255–7.

    CAS  PubMed  Google Scholar 

  41. Eleid MF, Reeder GS, Rihal CS. Comparison of left atrial pressure monitoring with dedicated catheter versus steerable guiding catheter during transcatheter mitral valve repair. Catheter Cardiovasc Interv. 2018;92(2):374–8.

    Article  PubMed  Google Scholar 

  42. Maor E, Raphael CE, Panaich SS, Alkhouli M, Cabalka A, Hagler DJ, et al. Left atrial pressure and predictors of survival after percutaneous mitral paravalvular leak closure. Catheter Cardiovasc Interv. 2017;90(5):861–9.

    Article  PubMed  Google Scholar 

  43. Gibson DN, Di Biase L, Mohanty P, Patel JD, Bai R, Sanchez J, et al. Stiff left atrial syndrome after catheter ablation for atrial fibrillation: clinical characterization, prevalence, and predictors. Heart Rhythm. 2011;8(9):1364–71.

    Article  PubMed  Google Scholar 

  44. Holmes DR Jr, Schwartz RS, Latus GG, Van Tassel RAA. History of left atrial appendage occlusion. Interv Cardiol Clin. 2018;7(2):143–50.

    PubMed  Google Scholar 

  45. Holmes DR, Reddy VY, Turi ZG, Doshi SK, Sievert H, Buchbinder M, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374(9689):534–42.

    Article  CAS  PubMed  Google Scholar 

  46. Raphael CE, Alkhouli M, Maor E, Panaich SS, Alli O, Coylewright M, et al. Building blocks of structural intervention. Catheter Cardiovasc Interv. 2017;10(10):e005686.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjit S. Rihal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Mayo Foundation for Medical Education and Research, under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rihal, C.S., Simard, T.J., Holmes, D.R. (2021). 2000s: Structural Heart Disease. In: Holmes Jr., D.R., Frye, R.L., Friedman, P.A., Hagler, D.J., Munger, T.M., Ritman, E.L. (eds) The Mayo Clinic Cardiac Catheterization Laboratory. Springer, Cham. https://doi.org/10.1007/978-3-030-79329-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79329-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79328-9

  • Online ISBN: 978-3-030-79329-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics