Skip to main content

Contrast-Enhanced CT and MR Scanning of the Brain

  • Chapter
  • First Online:
Medical Imaging Contrast Agents: A Clinical Manual
  • 993 Accesses

Abstract

Since the number of medical imaging has increased in recent years, the use of contrast agents (CAs) has increased accordingly. CAs were used for cross-sectional studies in the 1970s for computed tomography (CT) and in the 1980s for magnetic resonance imaging (MRI).

CAs were used since the early days of CT for brain imaging. Iodine-based CAs can be grouped by osmolarity, ionicity, and the number of benzene rings (Beckett et al., Radiographics 35(6):1738–50, 2015). Initially, both urographic and angiographic iodine-based CAs were used for contrast-enhanced (CE) CT, whereas these agents were now replaced by low and iso-osmolar CAs which have fewer side effects and higher safety margins.

Gadolinium (Gd)-based agents, after validated for intravascular use in the late 1980s, are extremely well-tolerated and there has been a significant increase in the use of CAs since then. In 1988, the first CA specifically designed for MRI, gadopentetate dimeglumine, became available for clinical use (Lohrke et al., Adv Ther 33(1):1–28, 2016). In the early stages of development of Gd-based CAs, it was emphasized that many tumors (Schoerner et al., Neurosurg Rev 7(4):303–12, 1984) and inflammatory-infectious pathologies may exhibit CE due to impaired BBB in brain (Runge et al., AJNR Am J Neuroradiol 6(2):139–47, 1985). Imaging of primary and secondary central nervous system (CNS) tumors is now a major clinical application of CE-MRI. In the 1980s, when MS lesions started to be examined by MRI and were shown to be superior to CT in detecting lesions (Kirshner et al., Arch Neurol 42(9):859–63, 1985; Young et al. Lancet 2(8255):1063–66, 1981), CE-MRI has become the gold standard in the diagnosis of MS. Today, after nearly 30 years of CE-MRI imaging, the influence of this modality has widened beyond initial expectations and become an essential tool for diagnosis. Advances in CAs and the technical capabilities of MRI have increased the precision and usefulness of CE-MRI for many different indications.

The aim of this chapter is to give some information about CE mechanisms and patterns in brain, to ensure an overview of the CA-related density and signal changes of brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood–brain barrier

CA:

Contrast agent

CE:

Contrast enhancement

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CT:

Computed tomography

GBM:

Glioblastoma multiforme

Gd:

Gadolinium

MR:

Magnetic resonance

MS:

Multiple sclerosis

NSF:

Nephrogenic systemic fibrosis

WHO:

World Health Organization

References

  1. Beckett KR, Moriarity AK, Langer JM. Safe use of contrast media: what the radiologist needs to know. Radiographics. 2015;35(6):1738–50.

    Article  PubMed  Google Scholar 

  2. Lohrke J, Frenzel T, Endrikat J, et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 2016;33(1):1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schoerner W, Kazner E, Laniado M, Sprung C, Felix R. Magnetic resonance tomography (MRT) of intracranial tumours: initial experience with the use of the contrast medium gadolinium-DTPA. Neurosurg Rev. 1984;7(4):303–12.

    Article  Google Scholar 

  4. Runge VM, Clanton JA, Price AC, et al. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model. AJNR Am J Neuroradiol. 1985;6(2):139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirshner HS, Tsai SI, Runge VM, Price AC. Magnetic resonance imaging and other techniques in the diagnosis of multiple sclerosis. Arch Neurol. 1985;42(9):859–63.

    Article  CAS  PubMed  Google Scholar 

  6. Young IR, Hall AS, Pallis CA, Legg NJ, Bydder GM, Steiner RE. Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet. 1981;2(8255):1063–6.

    Article  CAS  PubMed  Google Scholar 

  7. Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW. Patterns of contrast enhancement in the brain and meninges. Radiographics. 2007;27(2):525–51.

    Article  PubMed  Google Scholar 

  8. Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276(1):228–32.

    Article  PubMed  Google Scholar 

  9. Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91.

    Article  PubMed  Google Scholar 

  10. Weberling LD, Kieslich PJ, Kickingereder P, et al. Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Invest Radiol. 2015;50:743–8.

    Article  CAS  PubMed  Google Scholar 

  11. Radbruch A, Haase R, Kieslich PJ, et al. No signal intensity increase in 1the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology. 2017;282:699–707.

    Article  PubMed  Google Scholar 

  12. Arana E, Martí-Bonmatí L, Ricart V, Pérez-Ebrí M. Dural enhancement with primary calvarial lesions. Neuroradiology. 2004;46(11):900–5.

    Article  CAS  PubMed  Google Scholar 

  13. Patel N, Kirmi O. Anatomy and imaging of the normal meninges. Semin Ultrasound CT MR. 2009;30(6):559–64.

    Article  PubMed  Google Scholar 

  14. George U, Rathore S, Pandian JD, Singh Y. Diffuse pachymeningeal enhancement and subdural and subarachnoid space opacification on delayed postcontrast fluid-attenuated inversion recovery imaging in spontaneous intracranial hypotension: visualizing the Monro-Kellie hypothesis. Am J Neuroradiol. 2011;32(1):E16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antony J, Hacking C, Jeffree RL. Pachymeningeal enhancement—a comprehensive review of literature. Neurosurg Rev. 2015;38(4):649–59.

    Article  PubMed  Google Scholar 

  16. Sainani NI, Lawande MA, Pungavkar SA, Desai M, Patkar DP, Mohanty PH. Spontaneous intracranial hypotension: a study of six cases with MR findings and literature review. Australas Radiol. 2006;50(5):419–23.

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe A, Horikoshi T, Uchida M, Koizumi H, Yagishita T, Kinouchi H. Diagnostic value of spinal MR imaging in spontaneous intracranial hypotension syndrome. Am J Neuroradiol. 2009;30(1):147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fathi AR, Roelcke U. Meningioma. Curr Neurol Neurosci Rep. 2013;13(4):337.

    Article  PubMed  CAS  Google Scholar 

  19. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol. 2010;99(3):307–14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saloner D, Uzelac A, Hetts S, Martin A, Dillon W. Modern meningioma imaging techniques. J Neurooncol. 2010;99(3):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Omay SB, Barnett GH. Surgical navigation for meningioma surgery. J Neurooncol. 2010;99(3):357–64.

    Article  PubMed  Google Scholar 

  22. Baizabal CJF, Barragán-Campos HM, Alonso-Juárez M, et al. Dural metastases as a presentation of a Brenner tumor. J Clin Neurosci. 2010;17(4):524–6.

    Article  Google Scholar 

  23. Cheng YK, Wang TC, Yang JT, Lee MH, Su CH. Dural metastasis from prostatic adenocarcinoma mimicking chronic subdural hematoma. J Clin Neurosci. 2009;16(8):1084–6.

    Article  PubMed  Google Scholar 

  24. Blitshteyn S, Mechtler LL, Bakshi R. Diffuse dural gadolinium MRI enhancement associated with bilateral chronic subdural hematomas. Clin Imaging. 2004;28(2):90–2.

    Article  PubMed  Google Scholar 

  25. Rozen TD. Pachymeningeal enhancement on MRI: a venous phenomena not always related to intracranial hypotension resolving pachymeningeal enhancement and cerebral vein thrombosis. Headache. 2013;53(4):673–5.

    Article  PubMed  Google Scholar 

  26. Tian CL, Pu CQ. Dural enhancement detected by magnetic resonance imaging reflecting the underlying causes of cerebral venous sinus thrombosis. Chin Med J (Engl). 2012;125(8):1513–6.

    Google Scholar 

  27. Joelson E, Ruthrauff B, Ali F, et al. Multifocal dural enhancement associated with temporal arteritis. Arch Neurol. 2000;57(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  28. Sage MR, Wilson AJ, Scroop R. Contrast media and the brain. The basis of CT and MR imaging enhancement. Neuroimaging Clin N Am. 1998;8(3):695–707.

    CAS  PubMed  Google Scholar 

  29. Wong J, Douglas JQ. Imaging of central nervous system infections. Semin Roentgenol. 1999;34(2):123–43. WB Saunders.

    Article  CAS  PubMed  Google Scholar 

  30. Schaefer PW. Diffusion-weighted imaging as a problem-solving tool in the evaluation of patients with acute strokelike syndromes. Top Magn Reson Imaging. 2000;11(5):300–9.

    Article  CAS  PubMed  Google Scholar 

  31. Silverstein AM, Alexander JA. Acute postictal cerebral imaging. Am J Neuroradiol. 1998;19(8):1485–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Muller JP, Destee A, Lozes G, Pruvo JP, Jomin M, Warot P. Transient cortical contrast enhancement on CT scan in migraine. Headache. 1987;27:578–9.

    Article  CAS  PubMed  Google Scholar 

  33. Noguchi T, et al. CT and MRI findings of human herpesvirus 6–associated encephalopathy: comparison with findings of herpes simplex virus encephalitis. Am J Roentgenol. 2010;194(3):754–60.

    Article  Google Scholar 

  34. Elster AD, Moody DM. Early cerebral infarction: gadopentetate dimeglumine enhancement. Radiology. 1990;177:627–32.

    Article  CAS  PubMed  Google Scholar 

  35. Inoue Y, Takemoto K, Miyamoto T, et al. Sequential computed tomography scans in acute cerebral infarction. Radiology. 1980;135:655–62.

    Article  CAS  PubMed  Google Scholar 

  36. Runge VM, Kirsch JE, Wells JW, Dunworth JN, Woolfolk CE. Visualization of blood-brain barrier disruption on MR images of cats with acute cerebral infarction: value of administering a high dose of contrast material. Am J Roentgenol. 1994;162:431–5.

    Article  CAS  Google Scholar 

  37. Norton GA, Kishore PR, Lin J. CT contrast enhancement in cerebral infarction. Am J Roentgenol. 1978;131:881–5.

    Article  CAS  Google Scholar 

  38. Silverstein AM, Alexander JA. Acute postictal cerebral imaging. Am J Neuroradiol. 1998;19:1485–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–72.

    Article  PubMed  Google Scholar 

  40. Fabi A, Felici A, Metro G, et al. Brain metastases from solid tumors: disease outcome according to type of treatment and therapeutic resources of the treating center. J Exp Clin Cancer Res. 2011;30(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eichler AF, Plotkin SR. Brain metastases. Curr Treat Options Neurol. 2008;10(4):308–14.

    Article  PubMed  Google Scholar 

  42. Young RJ, Sills AK, Brem S, Knopp EA. Neuroimaging of metastatic brain disease. Neurosurgery. 2005;57(Suppl 5):S4–10.

    Article  Google Scholar 

  43. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–54.

    Article  PubMed  Google Scholar 

  44. Mongan JP, Fadul CE, Cole BF, et al. Brain metastases from colorectal cancer: risk factors, incidence, and the possible role of chemokines. Clin Colorectal Cancer. 2009;8(2):100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nussbaum ES, Djalilian HR, Cho KH, Hall WA. Brain metastases: histology, multiplicity, surgery, and survival. Cancer. 1996;78(8):1781–8.

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz KM, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology. 2006;48(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  47. Rozell JM, Mtui E, Pan YN, Li S. Infectious and inflammatory diseases of the central nervous system—the spectrum of imaging findings and differential diagnosis. Emerg Radiol. 2017;24(6):619–33.

    Article  PubMed  Google Scholar 

  48. Kikuchi K, Hiratsuka Y, Kohno S, Ohue S, Miki H, Mochizuki T. Radiological features of cerebellar glioblastoma. J Neuroradiol. 2016;43(4):260–5.

    Article  PubMed  Google Scholar 

  49. Agnihotri S, Burrell KE, Wolf A, et al. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp. 2013;61(1):25–41.

    Article  CAS  Google Scholar 

  50. Rees JH, Smirniotopoulos JG, Jones RV, Wong K. Glioblastoma multiforme: radiologic-pathologic correlation. Radiographics. 1996;16(6):1413–38.

    Article  CAS  PubMed  Google Scholar 

  51. ElBanan MG, Amer AM, Zinn PO, Colen RR. Imaging genomics of glioblastoma: state of the art bridge between genomics and neuroradiology. Neuroimaging Clin N Am. 2015;25(1):141–53.

    Article  PubMed  Google Scholar 

  52. Zinn PO, Colen RR. Imaging genomic mapping in glioblastoma. Neurosurgery. 2013;60(Suppl 1):126–30.

    Article  PubMed  Google Scholar 

  53. Osborn AG, Salzman KL, Barkovich AJ. Diagnostic imaging: brain. Philadelphia: Amirsys; 2010.

    Google Scholar 

  54. Smith AB, Smirniotopoulos JG, Horkanyne-Szakaly I. From the radiologic pathology archives: intraventricular neoplasms: radiologic-pathologic correlation. Radiographics. 2013;33(1):21–43.

    Article  PubMed  Google Scholar 

  55. Raz E, Zagzag D, Saba L, et al. Cyst with a mural nodule tumor of the brain. Cancer Imaging. 2012;12(1):237.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Offenbacher H, Fazekas F, Schmidt R, et al. Assessment of MRI criteria for a diagnosis of MS. Neurology. 1993;43(5):905.

    Article  CAS  PubMed  Google Scholar 

  57. Fisniku LK, Brex PA, Altmann DR, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131(3):808–17.

    Article  CAS  PubMed  Google Scholar 

  58. Tillema JM, Pirko I. Neuroradiological evaluation of demyelinating disease. Ther Adv Neurol Disord. 2013;6:249–68.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, Davis FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990-1994. Neuro Oncol. 1999;1(1):14–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller DC, Hochberg FH, Harris NL, Gruber ML, Louis DN, Cohen H. Pathology with clinical correlations of primary central nervous system non-Hodgkin’s lymphoma. The Massachusetts General Hospital experience 1958-1989. Cancer. 1994;74(4):1383–97.

    Article  CAS  PubMed  Google Scholar 

  61. Bataille B, Delwail V, Menet E, et al. Primary intracerebral malignant lymphoma: report of 248 cases. J Neurosurg. 2000;92(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  62. Hayabuchi N, Shibamoto Y, Onizuka Y, JASTRO CNS Lymphoma Study Group Members. Primary central nervous system lymphoma in Japan: a nationwide survey. Int J Radiat Oncol Biol Phys. 1999;44(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  63. Kuker W, Nägele T, Korfel A, et al. Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients. J Neurooncol. 2005;72(2):169177.

    Article  Google Scholar 

  64. Erdag N, Bhorade RM, Alberico RA, Yousuf N, Patel MR. Primary lymphoma of the central nervous system: typical and atypical CT and MR imaging appearances. Am J Roentgenol. 2001;176(5):1319–26.

    Article  CAS  Google Scholar 

  65. Zhang D, Hu LB, Henning T, et al. MRI findings of primary CNS lymphoma in 26 immunocompetent patients. Korean J Radiol. 2010;11(3):269–77.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Batchelor T, Loeffler JS. Primary CNS lymphoma. J Clin Oncol. 2006;24(8):1281–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onal, Y. (2021). Contrast-Enhanced CT and MR Scanning of the Brain. In: Erturk, S.M., Ros, P.R., Ichikawa, T., Saylisoy, S. (eds) Medical Imaging Contrast Agents: A Clinical Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-79256-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79256-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79255-8

  • Online ISBN: 978-3-030-79256-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics