Skip to main content

Deep Dense and Convolutional Autoencoders for Machine Acoustic Anomaly Detection

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2021)

Abstract

Recently, there have been advances in using unsupervised learning methods for Acoustic Anomaly Detection (AAD). In this paper, we propose an improved version of two deep AutoEncoders (AE) for unsupervised AAD for six types of working machines, namely Dense and Convolutional AEs. A large set of computational experiments was held, showing that the two proposed deep autoencoders, when combined with a mel-spectrogram sound preprocessing, are quite competitive and outperform a recently proposed AE baseline. Overall, a high-quality class discrimination level was achieved, ranging from 72% to 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/APILASTRI/DCASE_Task2_UMINHO.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016)

    Google Scholar 

  2. Afrillia, Y., Mawengkang, H., Ramli, M., Fadlisyah, Fhonna, R.P.: Performance measurement of mel frequency ceptral coefficient (MFCC) method in learning system of Al-Qur’an based in Nagham Pattern recognition. J. Phys. Conf. Ser. 930, 012036 (2017). https://doi.org/10.1088/1742-6596/930/1/012036

  3. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, vol. 2, no. 1, pp. 1–18 (2015)

    Google Scholar 

  4. Aurino, F., Folla, M., Gargiulo, F., Moscato, V., Picariello, A., Sansone, C.: One-class SVM based approach for detecting anomalous audio events. In: 2014 International Conference on Intelligent Networking and Collaborative Systems, pp. 145–151. IEEE (2014)

    Google Scholar 

  5. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fus. 44, 78–96 (2018). https://doi.org/10.1016/j.inffus.2017.12.007

    Article  Google Scholar 

  6. Chen, C., et al..: Novelty detection via non-adversarial generative network. arXiv preprint arXiv:2002.00522 (2020)

  7. Chu, S., Narayanan, S., Kuo, C.C.J.: Environmental sound recognition with time-frequency audio features. IEEE Transa. Audio Speech Lang. Process. 17, 1142–1158 (2009). https://doi.org/10.1109/TASL.2009.2017438

    Article  Google Scholar 

  8. Duman, T.B., Bayram, B., İnce, G.: Acoustic anomaly detection using convolutional autoencoders in industrial processes. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) SOCO 2019. AISC, vol. 950, pp. 432–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20055-8_41

    Chapter  Google Scholar 

  9. Farzad, A., Gulliver, T.A.: Unsupervised log message anomaly detection. ICT Exp. 6(3), 229–237 (2020)

    Article  Google Scholar 

  10. Harar, P., Galaz, Z., Alonso-Hernandez, J.B., Mekyska, J., Burget, R., Smekal,Z.: Towards robust voice pathology detection. Neural Comput. Appl., 1–11 (2018). https://doi.org/10.1007/s00521-018-3464-7

  11. Hershey, S., et al.: CNN architectures for large-scale audio classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 131–135. IEEE (2017)

    Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  13. Jam, M.M., Sadjedi, H.: Identification of hearing disorder by multi-band entropy cepstrum extraction from infant’s cry. In: 2009 International Conference on Biomedical and Pharmaceutical Engineering, pp. 1–5 (2009)

    Google Scholar 

  14. Kawaguchi, Y., Endo, T.: How can we detect anomalies from subsampled audio signals? In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017)

    Google Scholar 

  15. Kohlsdorf, D., Herzing, D., Starner, T.: An auto encoder for audio dolphin communication. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)

    Google Scholar 

  16. Koizumi, Y., et al.: Description and discussion on DCASE2020 challenge task2: unsupervised anomalous sound detection for machine condition monitoring. CoRR abs/2006.05822 (2020)

    Google Scholar 

  17. Koizumi, Y., Saito, S., Uematsu, H., Harada, N., Imoto, K.: ToyADMOS: a dataset of miniature-machine operating sounds for anomalous sound detection. In: 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 313–317. IEEE (2019). https://ieeexplore.ieee.org/document/8937164

  18. Koizumi, Y., Saito, S., Uematsu, H., Kawachi, Y., Harada, N.: Unsupervised detection of anomalous sound based on deep learning and the Neyman-Pearson Lemma. IEEE/ACM Trans. Audio Speech Lang. Process. 27(1), 212–224 (2018)

    Article  Google Scholar 

  19. Koizumi, Y., Saito, S., Yamaguchi, M., Murata, S., Harada, N.: Batch uniformization for minimizing maximum anomaly score of DNN-based anomaly detection in sounds (2019)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  21. Li, J., Dai, W., Metze, F., Qu, S., Das, S.: A comparison of deep learning methods for environmental sound detection. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 126–130. IEEE (2017)

    Google Scholar 

  22. Liu, Y., Zhuang, C., Lu, F.: Unsupervised two-stage anomaly detection (2021)

    Google Scholar 

  23. Ntalampiras, S., Potamitis, I.: Acoustic detection of unknown bird species and individuals. CAAI Trans. Intell. Technol. (2021). https://doi.org/10.1049/cit2.12007

    Article  Google Scholar 

  24. Oh, D.Y., Yun, I.D.: Residual error based anomaly detection using auto-encoder in SMD machine sound. Sensors 18(5), 1308 (2018)

    Article  Google Scholar 

  25. Panfilenko, D., Poller, P., Sonntag, D., Zillner, S., Schneider, M.: BPMN for knowledge acquisition and anomaly handling in CPS for smart factories. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4. IEEE (2016)

    Google Scholar 

  26. Provotar, O.I., Linder, Y.M., Veres, M.M.: Unsupervised anomaly detection in time series using LSTM-based autoencoders. In: 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), pp. 513–517. IEEE (2019)

    Google Scholar 

  27. Purohit, H., et al.: MIMII dataset: sound dataset for malfunctioning industrial machine investigation and inspection. In: Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop, DCASE 2019, pp. 209–213 (November 2019)

    Google Scholar 

  28. Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S., Sainath, T.N.: Deep learning for audio signal processing. IEEE J. Sel. Top. Sig. Process. 13(2), 206–219 (2019). https://doi.org/10.1109/JSTSP.2019.2908700

    Article  Google Scholar 

  29. Rovetta, S., Mnasri, Z., Masulli, F.: Detection of hazardous road events from audio streams: an ensemble outlier detection approach. In: 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–6. IEEE (2020)

    Google Scholar 

  30. Sharma, G., Umapathy, K., Krishnan, S.: Trends in audio signal feature extraction methods. Appl. Acoust. 158, 107020 (2020)

    Article  Google Scholar 

  31. Sonntag, D., Zillner, S., van der Smagt, P., Lörincz, A.: Overview of the CPS for smart factories project: deep learning, knowledge acquisition, anomaly detection and intelligent user interfaces. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things. SSWT, pp. 487–504. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42559-7_19

    Chapter  Google Scholar 

  32. Tagawa, T., Tadokoro, Y., Yairi, T.: Structured denoising autoencoder for fault detection and analysis. In: Asian Conference on Machine Learning, pp. 96–111 (2015)

    Google Scholar 

  33. Torfi, A., Iranmanesh, S.M., Nasrabadi, N.M., Dawson, J.M.: 3D convolutional neural networks for cross audio-visual matching recognition. IEEE Access 5, 22081–22091 (2017)

    Article  Google Scholar 

  34. Zhu, T., Wang, J., Cheng, S., Li, Y., Li, J.: Retrieving the relative kernel dataset from big sensory data for continuous queries in IoT systems. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–14 (2019). https://doi.org/10.1186/s13638-019-1467-4

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) - Project n\(^\circ \) 039334; Funding Reference: POCI-01-0247-FEDER-039334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Cortez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coelho, G. et al. (2021). Deep Dense and Convolutional Autoencoders for Machine Acoustic Anomaly Detection. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 627. Springer, Cham. https://doi.org/10.1007/978-3-030-79150-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79150-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79149-0

  • Online ISBN: 978-3-030-79150-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics