Skip to main content

Liver Injury and Failure in Critically Ill Children

  • Chapter
  • First Online:
Liver Diseases in the Pediatric Intensive Care Unit

Abstract

Liver injury is frequent in the intensive care unit and its occurrence is associated with poorer outcomes. Multiple and interrelated mechanisms are involved. We review four major pathophysiological pathways of secondary liver injury in critically ill children: hypoxic liver injury, sepsis and the systemic inflammatory response syndrome, venous congestion, and treatment-associated liver injury including drug-induced liver injury and parenteral nutrition-associated liver disease. The diagnosis of liver injury in critically ill patients remains a challenge because of the lack of specificity of current markers and the presence of multiple confounders. We review the different patterns of liver injury and suggest an approach to abnormal liver test in the PICU. Central components of the treatment of critical illness-induced liver injury are detailed, mainly recognition of abnormal liver tests, prompt identification and treatment of the underlying illness, optimization of the hepatosplanchnic blood flow, removal of potentially hepatotoxic drugs, and treatment of the complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson SJ, Cowan ML, Johnston I, Musa S, Grounds M, Rahman TM. ‘Liver function tests’ on the intensive care unit: a prospective, observational study. Intensive Care Med. 2009;35(8):1406–11. https://doi.org/10.1007/s00134-009-1511-7.

    Article  CAS  PubMed  Google Scholar 

  2. Kramer L, Jordan B, Druml W, Bauer P, Metnitz PGH, for the Austrian Epidemiologic Study on Intensive Care ASG. Incidence and prognosis of early hepatic dysfunction in critically ill patients—A prospective multicenter study. Crit Care Med. 2007;35(4):1099. https://doi.org/10.1097/01.CCM.0000259462.97164.A0.

    Article  PubMed  Google Scholar 

  3. Mesotten D, Wauters J, Van den Berghe G, Wouters PJ, Milants I, Wilmer A. The effect of strict blood glucose control on biliary sludge and cholestasis in critically ill patients. J Clin Endocrinol Metab. 2009;94(7):2345–52. https://doi.org/10.1210/jc.2008-2579.

    Article  CAS  PubMed  Google Scholar 

  4. Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver injury and failure in critical illness. Hepatology. 2019;70(6):2204–15. https://doi.org/10.1002/hep.30824.

    Article  PubMed  Google Scholar 

  5. Tapper EB, Sengupta N, Bonder A. The incidence and outcomes of ischemic hepatitis: a systematic review with meta-analysis. Am J Med. 2015;128(12):1314–21. https://doi.org/10.1016/j.amjmed.2015.07.033.

    Article  PubMed  Google Scholar 

  6. Van den Broecke A, Van Coile L, Decruyenaere A, et al. Epidemiology, causes, evolution and outcome in a single-center cohort of 1116 critically ill patients with hypoxic hepatitis. Ann Intensive Care. 2018;8:15. https://doi.org/10.1186/s13613-018-0356-z.

    Article  PubMed  Google Scholar 

  7. Aboelsoud MM, Javaid AI, Al-Qadi MO, Lewis JH. Hypoxic hepatitis — its biochemical profile, causes and risk factors of mortality in critically-ill patients: a cohort study of 565 patients. J Crit Care. 2017;41:9–15. https://doi.org/10.1016/j.jcrc.2017.04.040.

    Article  CAS  PubMed  Google Scholar 

  8. Zahmatkeshan M, Serati Z, Freydooni S, Safarpour AR, Esmailnejad A, Haghbin S. Prediction of early liver failure in pediatric patients admitted to intensive care unit. Middle East J Dig Dis. 2019;11(3):141–6. https://doi.org/10.15171/mejdd.2019.140.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jenniskens M, Güiza F, Haghedooren R, et al. Prevalence and prognostic value of abnormal liver test results in critically ill children and the impact of delaying parenteral nutrition*. Pediatr Crit Care Med. 2018;19(12):1120–9. https://doi.org/10.1097/PCC.0000000000001734.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shteyer E, Yatsiv I, Sharkia M, Milgarter E, Granot E. Serum transaminases as a prognostic factor in children post cardiac surgery. Pediatr Int. 2011;53(5):725–8. https://doi.org/10.1111/j.1442-200X.2011.03356.x.

    Article  CAS  PubMed  Google Scholar 

  11. Cheung A, Flamm S. Hepatobiliary complications in critically ill patients. Clin Liver Dis. 2019;23(2):221–32. https://doi.org/10.1016/j.cld.2018.12.005.

    Article  PubMed  Google Scholar 

  12. Fuhrmann V, Kneidinger N, Herkner H, et al. Impact of hypoxic hepatitis on mortality in the intensive care unit. Intensive Care Med. 2011;37(8):1302–10. https://doi.org/10.1007/s00134-011-2248-7.

    Article  PubMed  Google Scholar 

  13. Barañano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99(25):16093–8. https://doi.org/10.1073/pnas.252626999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zelenka J, Muchova L, Zelenkova M, et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie. 2012;94(8):1821–7. https://doi.org/10.1016/j.biochi.2012.04.026.

    Article  CAS  PubMed  Google Scholar 

  15. Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171(10):e172352. https://doi.org/10.1001/jamapediatrics.2017.2352.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Graciano AL, Balko JA, Rahn DS, Ahmad N, Giroir BP. The Pediatric Multiple Organ Dysfunction Score (P-MODS): development and validation of an objective scale to measure the severity of multiple organ dysfunction in critically ill children. Crit Care Med. 2005;33(7):1484–91. https://doi.org/10.1097/01.CCM.0000170943.23633.47.

    Article  PubMed  Google Scholar 

  17. Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated pediatric risk of mortality score. Crit Care Med. 1996;24(5):743–52. https://doi.org/10.1097/00003246-199605000-00004.

    Article  CAS  PubMed  Google Scholar 

  18. Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89(4):1269–339. https://doi.org/10.1152/physrev.00027.2008.

    Article  CAS  PubMed  Google Scholar 

  19. Henrion J. Hypoxic hepatitis. Liver Int. 2012;32(7):1039–52. https://doi.org/10.1111/j.1478-3231.2011.02655.x.

    Article  CAS  PubMed  Google Scholar 

  20. Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB. The mesenteric hemodynamic response to circulatory shock: an overview. Shock. 2001;15(5):329–43. https://doi.org/10.1097/00024382-200115050-00001.

    Article  CAS  PubMed  Google Scholar 

  21. Fuhrmann V, Kneidinger N, Herkner H, et al. Hypoxic hepatitis: underlying conditions and risk factors for mortality in critically ill patients. Intensive Care Med. 2009;35(8):1397–405. https://doi.org/10.1007/s00134-009-1508-2.

    Article  PubMed  Google Scholar 

  22. Birrer R, Takuda Y, Takara T. Hypoxic hepatopathy: pathophysiology and prognosis. Intern Med. 2007;46(14):1063–70. https://doi.org/10.2169/internalmedicine.46.0059.

    Article  PubMed  Google Scholar 

  23. Fuhrmann V, Jäger B, Zubkova A, Drolz A. Hypoxic hepatitis - epidemiology, pathophysiology and clinical management. Wien Klin Wochenschr. 2010;122(5–6):129–39. https://doi.org/10.1007/s00508-010-1357-6.

    Article  PubMed  Google Scholar 

  24. Trilok G, Qing YC, Li-Jun X. Hypoxic hepatitis: a challenging diagnosis. Hepatol Int. 2012;6(4):663–9. https://doi.org/10.1007/s12072-011-9336-1.

    Article  PubMed  Google Scholar 

  25. Waseem N, Chen P-H. Hypoxic hepatitis: a review and clinical update. J Clin Transl Hepatol. 2016;4(3):263–8. https://doi.org/10.14218/JCTH.2016.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kobashi H, Toshimori J, Yamamoto K. Sepsis-associated liver injury: incidence, classification and the clinical significance. Hepatol Res. 2013;43(3):255–66. https://doi.org/10.1111/j.1872-034X.2012.01069.x.

    Article  PubMed  Google Scholar 

  27. Yao Y, Wang D, Yin Y. Advances in sepsis-associated liver dysfunction. Burns Trauma. 2014;2(3):97. https://doi.org/10.4103/2321-3868.132689.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woźnica EA, Inglot M, Woźnica RK, Łysenko L. Liver dysfunction in sepsis. Adv Clin Exp Med. 2018;27(4):547–51. https://doi.org/10.17219/acem/68363.

    Article  PubMed  Google Scholar 

  29. Strnad P, Tacke F, Koch A, Trautwein C. Liver — guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14(1):55–66. https://doi.org/10.1038/nrgastro.2016.168.

    Article  CAS  PubMed  Google Scholar 

  30. Jenniskens M, Langouche L, Vanwijngaerden Y-M, Mesotten D, Van den Berghe G. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Med. 2016;42(1):16–27. https://doi.org/10.1007/s00134-015-4054-0.

    Article  CAS  PubMed  Google Scholar 

  31. Wells ML, Venkatesh SK. Congestive hepatopathy. Abdom Radiol (NY). 2018;43(8):2037–51. https://doi.org/10.1007/s00261-017-1387-x.

    Article  Google Scholar 

  32. Komatsu H, Inui A, Kishiki K, et al. Liver disease secondary to congenital heart disease in children. Expert Rev Gastroenterol Hepatol. 2019;13(7):651–66. https://doi.org/10.1080/17474124.2019.1621746.

    Article  CAS  PubMed  Google Scholar 

  33. Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F. Heart failure and liver disease: cardiohepatic interactions. JACC Heart Fail. 2019;7(2):87–97. https://doi.org/10.1016/j.jchf.2018.10.007.

    Article  PubMed  Google Scholar 

  34. Seeto RK, Fenn B, Rockey DC. Ischemic hepatitis: clinical presentation and pathogenesis. Am J Med. 2000;109(2):109–13. https://doi.org/10.1016/s0002-9343(00)00461-7.

    Article  CAS  PubMed  Google Scholar 

  35. Henrion J, Schapira M, Luwaert R, Colin L, Delannoy A, Heller FR. Hypoxic hepatitis: clinical and hemodynamic study in 142 consecutive cases. Medicine (Baltimore). 2003;82(6):392–406. https://doi.org/10.1097/01.md.0000101573.54295.bd.

    Article  Google Scholar 

  36. Lauriti G, Zani A, Aufieri R, et al. Incidence, prevention, and treatment of parenteral nutrition–associated cholestasis and intestinal failure–associated liver disease in infants and children. J Parenter Enter Nutr. 2014;38(1):70–85. https://doi.org/10.1177/0148607113496280.

    Article  Google Scholar 

  37. Rangel SJ, Calkins CM, Cowles RA, et al. Parenteral nutrition–associated cholestasis: an American Pediatric Surgical Association outcomes and clinical trials committee systematic review. J Pediatr Surg. 2012;47(1):225–40. https://doi.org/10.1016/j.jpedsurg.2011.10.007.

    Article  PubMed  Google Scholar 

  38. Grau T, Bonet A, Rubio M, et al. Liver dysfunction associated with artificial nutrition in critically ill patients. Crit Care. 2007;11(1):R10. https://doi.org/10.1186/cc5670.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cahova M, Bratova M, Wohl P. Parenteral nutrition-associated liver disease: the role of the gut microbiota. Nutrients. 2017;9(9):987. https://doi.org/10.3390/nu9090987.

    Article  CAS  PubMed Central  Google Scholar 

  40. Madnawat H, Welu AL, Gilbert EJ, et al. Mechanisms of parenteral nutrition–associated liver and gut injury. Nutr Clin Pract. 2020;35(1):63–71. https://doi.org/10.1002/ncp.10461.

    Article  PubMed  Google Scholar 

  41. Bae HJ, Shin SH, Kim E-K, Kim H-S, Cho YS, Gwak HS. Effects of cyclic parenteral nutrition on parenteral nutrition-associated cholestasis in newborns. Asia Pac J Clin Nutr. 2019;28(1):42–8. https://doi.org/10.6133/apjcn.201903_28(1).0007.

    Article  CAS  PubMed  Google Scholar 

  42. Orso G, Mandato C, Veropalumbo C, Cecchi N, Garzi A, Vajro P. Pediatric parenteral nutrition-associated liver disease and cholestasis: novel advances in pathomechanisms-based prevention and treatment. Dig Liver Dis. 2016;48(3):215–22. https://doi.org/10.1016/j.dld.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  43. Lam HS, Tam YH, Poon TCW, et al. A double-blind randomised controlled trial of fish oil-based versus soy-based lipid preparations in the treatment of infants with parenteral nutrition-associated cholestasis. Neonatology. 2014;105(4):290–6. https://doi.org/10.1159/000358267.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmerman HJ. Drug-induced liver disease. Clin Liver Dis. 2000;4(1):73–96, vi. https://doi.org/10.1016/s1089-3261(05)70097-0.

    Article  CAS  PubMed  Google Scholar 

  45. Amin MD, Harpavat S, Leung DH. Drug-induced liver injury in children. Curr Opin Pediatr. 2015;27(5):625–33. https://doi.org/10.1097/MOP.0000000000000264.

    Article  CAS  PubMed  Google Scholar 

  46. Molleston JP, Fontana RJ, Lopez MJ, Kleiner DE, Gu J, Chalasani N. Characteristics of idiosyncratic drug-induced liver injury in children: results from the DILIN prospective study. J Pediatr Gastroenterol Nutr. 2011;53(2):182–9. https://doi.org/10.1097/MPG.0b013e31821d6cfd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sridharan K, Daylami AA, Ajjawi R, Ajooz HAMA. Drug-induced liver injury in critically ill children taking antiepileptic drugs: a retrospective study. Curr Ther Res Clin Exp. 2020;92:100580. https://doi.org/10.1016/j.curtheres.2020.100580.

    Article  PubMed  PubMed Central  Google Scholar 

  48. LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Accessed June 26, 2020. http://www.ncbi.nlm.nih.gov/books/NBK547852/.

  49. Lescot T, Karvellas C, Beaussier M, Magder S. Acquired liver injury in the intensive care unit. Anesthesiology. 2012;117(4):898–904. https://doi.org/10.1097/ALN.0b013e318266c6df.

    Article  PubMed  Google Scholar 

  50. Pollak U, Ruderman T, Borik-Chiger S, Mishaly D, Serraf A, Vardi A. Transfusion-related acute hepatic injury following postoperative platelets administration in pediatric patients undergoing the Fontan procedure. Congenit Heart Dis. 2019;14(6):968–77. https://doi.org/10.1111/chd.12825.

    Article  PubMed  Google Scholar 

  51. Nachnani JS, Hamid F, Pandya P, Clarkston W, Alba LM. Transfusion-related acute hepatic enzyme elevation: a new disease entity? Eur J Gastroenterol Hepatol. 2010;22(3):378. https://doi.org/10.1097/MEG.0b013e3283279681.

    Article  PubMed  Google Scholar 

  52. Gudnason HO, Björnsson ES. Secondary sclerosing cholangitis in critically ill patients: current perspectives. Clin Exp Gastroenterol. 2017;10:105–11. https://doi.org/10.2147/CEG.S115518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martins P, Verdelho MM. Secondary Sclerosing cholangitis in critically ill patients: an underdiagnosed entity. GE Port J Gastroenterol. 2020;27(2):103–14. https://doi.org/10.1159/000501405.

    Article  PubMed  Google Scholar 

  54. Garland JS, Werlin SL, Rice TB. Ischemic hepatitis in children: diagnosis and clinical course. Crit Care Med. 1988;16(12):1209–12. https://doi.org/10.1097/00003246-198812000-00006.

    Article  CAS  PubMed  Google Scholar 

  55. Fuhrmann V, Madl C, Mueller C, et al. Hepatopulmonary syndrome in patients with hypoxic hepatitis. Gastroenterology. 2006;131(1):69–75. https://doi.org/10.1053/j.gastro.2006.04.014.

    Article  PubMed  Google Scholar 

  56. Drolz A, Horvatits T, Michl B, et al. Statin therapy is associated with reduced incidence of hypoxic hepatitis in critically ill patients. J Hepatol. 2014;60(6):1187–93. https://doi.org/10.1016/j.jhep.2014.01.019.

    Article  CAS  PubMed  Google Scholar 

  57. Jenniskens M, Langouche L, Van den Berghe G. Cholestatic alterations in the critically ill: some new light on an old problem. Chest. 2018;153(3):733–43. https://doi.org/10.1016/j.chest.2017.08.018.

    Article  PubMed  Google Scholar 

  58. Brienza N, Dalfino L, Cinnella G, Diele C, Bruno F, Fiore T. Jaundice in critical illness: promoting factors of a concealed reality. Intensive Care Med. 2006;32(2):267–74. https://doi.org/10.1007/s00134-005-0023-3.

    Article  PubMed  Google Scholar 

  59. Newsome PN, Cramb R, Davison SM, et al. Guidelines on the management of abnormal liver blood tests. Gut. 2018;67(1):6–19. https://doi.org/10.1136/gutjnl-2017-314924.

    Article  PubMed  Google Scholar 

  60. Horvatits T, Drolz A, Rutter K, et al. Circulating bile acids predict outcome in critically ill patients. Ann Intensive Care. 2017;7(1):48. https://doi.org/10.1186/s13613-017-0272-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manzotti C, Casazza G, Stimac T, Nikolova D, Gluud C. Total serum bile acids or serum bile acid profile, or both, for the diagnosis of intrahepatic cholestasis of pregnancy. Cochrane Database Syst Rev. 2019;7:CD012546. https://doi.org/10.1002/14651858.CD012546.pub2.

    Article  PubMed  Google Scholar 

  62. Halle BM, Poulsen TD, Pedersen HP. Indocyanine green plasma disappearance rate as dynamic liver function test in critically ill patients. Acta Anaesthesiol Scand. 2014;58(10):1214–9. https://doi.org/10.1111/aas.12406.

    Article  CAS  PubMed  Google Scholar 

  63. Sakka SG. Assessing liver function. Curr Opin Crit Care. 2007;13(2):207–14. https://doi.org/10.1097/MCC.0b013e328012b268.

    Article  PubMed  Google Scholar 

  64. Kortgen A, Paxian M, Werth M, et al. Prospective assessment of hepatic function and mechanisms of dysfunction in the critically ill. Shock. 2009;32(4):358–65. https://doi.org/10.1097/SHK.0b013e31819d8204.

    Article  PubMed  Google Scholar 

  65. Kimura S, Yoshioka T, Shibuya M, Sakano T, Tanaka R, Matsuyama S. Indocyanine green elimination rate detects hepatocellular dysfunction early in septic shock and correlates with survival. Crit Care Med. 2001;29(6):1159–63. https://doi.org/10.1097/00003246-200106000-00014.

    Article  CAS  PubMed  Google Scholar 

  66. Sakka SG, Reinhart K, Meier-Hellmann A. Prognostic value of the indocyanine green plasma disappearance rate in critically ill patients. Chest. 2002;122(5):1715–20. https://doi.org/10.1378/chest.122.5.1715.

    Article  PubMed  Google Scholar 

  67. Horvatits T, Kneidinger N, Drolz A, et al. Prognostic impact of ICG-PDR in patients with hypoxic hepatitis. Ann Intensive Care. 2015;5(1):47. https://doi.org/10.1186/s13613-015-0092-6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vos JJ, Wietasch JKG, Absalom AR, Hendriks HGD, Scheeren TWL. Green light for liver function monitoring using indocyanine green? An overview of current clinical applications. Anaesthesia. 2014;69(12):1364–76. https://doi.org/10.1111/anae.12755.

    Article  CAS  PubMed  Google Scholar 

  69. Koch A, Horn A, Dückers H, et al. Increased liver stiffness denotes hepatic dysfunction and mortality risk in critically ill non-cirrhotic patients at a medical ICU. Crit Care. 2011;15(6):R266. https://doi.org/10.1186/cc10543.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fink T, Heymann P, Taha-Melitz S, et al. Dobutamine pretreatment improves survival, liver function, and hepatic microcirculation after polymicrobial sepsis in rat. Shock. 2013;40(2):129–35. https://doi.org/10.1097/SHK.0b013e31829c361d.

    Article  CAS  PubMed  Google Scholar 

  71. Raddatz A, Kubulus D, Winning J, et al. Dobutamine improves liver function after hemorrhagic shock through induction of heme oxygenase-1. Am J Respir Crit Care Med. 2006;174(2):198–207. https://doi.org/10.1164/rccm.200508-1221OC.

    Article  CAS  PubMed  Google Scholar 

  72. Simić D, Milojević I, Bogićević D, et al. Preventive effect of ursodeoxycholic acid on parenteral nutrition-associated liver disease in infants. Srp Arh Celok Lek. 2014;142(3-4):184–8. https://doi.org/10.2298/sarh1404184s.

    Article  PubMed  Google Scholar 

  73. Drolz A, Horvatits T, Roedl K, et al. Outcome and features of acute kidney injury complicating hypoxic hepatitis at the medical intensive care unit. Ann Intensive Care. 2016;6(1):61. https://doi.org/10.1186/s13613-016-0162-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. El Banayosy A. First use of the Molecular Adsorbent Recirculating System technique on patients with hypoxic liver failure after cardiogenic shock. ASAIO J. 2004;50(4):332–7.

    Article  Google Scholar 

  75. Falkensteiner C, Kortgen A, Leonhardt J, Bauer M, Sponholz C. Comparison of the albumin dialysis devices molecular adsorbent recirculating system and ADVanced organ support in critically ill patients with liver failure - a retrospective analysis. Ther Apher Dial. 2021;25:225–36. https://doi.org/10.1111/1744-9987.13533.

    Article  CAS  PubMed  Google Scholar 

  76. Polson J, Lee WM. AASLD position paper: the management of acute liver failure. Hepatology. 2005;41(5):1179–97. https://doi.org/10.1002/hep.20703.

    Article  PubMed  Google Scholar 

  77. George R, Stevens A, Berkenbosch JW, Turpin J, Tobias J. Ursodeoxycholic acid in the treatment of cholestasis and hyperbilirubinemia in pediatric intensive care unit patients. South Med J. 2002;95(11):1276–9.

    Article  Google Scholar 

  78. Kramer L, Stauber R, Lenz K, Schusterschitz N, Trauner M, Joannidis M. A randomized controlled multicenter trial of high dose ursodesoxycholic acid versus placebo in sepsis-assoicated cholestasis. Z Für Gastroenterol. 2010;48(5):P8. https://doi.org/10.1055/s-0030-1254616.

    Article  Google Scholar 

  79. Lee WM, Hynan LS, Rossaro L, et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology. 2009;137(3):856–864.e1. https://doi.org/10.1053/j.gastro.2009.06.006.

    Article  CAS  PubMed  Google Scholar 

  80. Singh S, Hynan LS, Lee WM, Acute Liver Failure Study Group. Improvements in hepatic serological biomarkers are associated with clinical benefit of intravenous N-acetylcysteine in early stage non-acetaminophen acute liver failure. Dig Dis Sci. 2013;58(5):1397–402. https://doi.org/10.1007/s10620-012-2512-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jouvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plante, V., Jouvet, P. (2021). Liver Injury and Failure in Critically Ill Children. In: Jouvet, P., Alvarez, F. (eds) Liver Diseases in the Pediatric Intensive Care Unit. Springer, Cham. https://doi.org/10.1007/978-3-030-79132-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79132-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79131-5

  • Online ISBN: 978-3-030-79132-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics