Skip to main content

Abstract

Chemotherapy-induced neuropathy, ranking among the most common toxic neuropathies, primarily affects the sensory nerve modalities. Taxanes and oxaliplatin commonly cause an acute pain problem, something that presents soon after each individual dose and then generally improves over a course of days. In addition, these drugs and several other neurotoxic chemotherapy drugs commonly cause a more gradually appearing and more chronic neuropathy that primarily involves distal extremities. There are a number of similarities regarding the peripheral neuropathy caused by many chemotherapy drugs, noting that there are some distinct differences in them, also. When neurotoxic chemotherapy is stopped, neuropathy problems often improve. However, neuropathy can become a prominent problem for years, in some patients, leading to marked disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavaletti G, Marmiroli P (2020) Management of oxaliplatin-induced peripheral sensory neuropathy. Cancer 12(6):1370

    Article  CAS  Google Scholar 

  2. Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP (2008) A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev 34(4):368–377

    Article  CAS  PubMed  Google Scholar 

  3. Staff NP, Cavaletti G, Islam B, Lustberg M, Psimaras D, Tamburin S (2019) Platinum-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst 24:S26–S39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lucchetta M, Lonardi S, Bergamo F et al (2012) Incidence of atypical acute nerve hyperexcitability symptoms in oxaliplatin-treated patients with colorectal cancer. Cancer Chemother Pharmacol 70(6):899–902

    Article  CAS  PubMed  Google Scholar 

  5. Velasco R, Bruna J, Briani C et al (2014) Early predictors of oxaliplatin-induced cumulative neuropathy in colorectal cancer patients. J Neurol Neurosurg Psychiatry 85(4):392–398

    Article  PubMed  Google Scholar 

  6. Bruna J, Videla S, Argyriou AA et al (2018) Efficacy of a novel sigma-1 receptor antagonist for oxaliplatin-induced neuropathy: a randomized, double-blind, placebo-controlled phase IIa clinical trial. Neurotherapeutics 15(1):178–189

    Article  CAS  PubMed  Google Scholar 

  7. Glimelius B, Manojlovic N, Pfeiffer P et al (2018) Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx®): a placebo-controlled randomised phase II study (PLIANT). Acta Oncol 57(3):393–402

    Google Scholar 

  8. Lévi FA, Zidani R, Vannetzel J-M et al (1994) Chronomodulated versus fixed-infusion—rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (Leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. JNCI J Natl Cancer Inst 86(21):1608–1617

    Article  PubMed  Google Scholar 

  9. Durand J, Deplanque G, Montheil V et al (2012) Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol 23(1):200–205

    Article  CAS  PubMed  Google Scholar 

  10. Argyriou AA, Bruna J, Marmiroli P, Cavaletti G (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 82(1):51–77

    Article  PubMed  Google Scholar 

  11. Pachman DR, Qin R, Seisler D et al (2016) Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer 24(12):5059–5068

    Article  PubMed  PubMed Central  Google Scholar 

  12. Argyriou AA, Cavaletti G, Briani C et al (2013) Clinical pattern and associations of oxaliplatin acute neurotoxicity: a prospective study in 170 patients with colorectal cancer. Cancer 119(2):438–444

    Article  CAS  PubMed  Google Scholar 

  13. Park SB, Goldstein D, Lin CS-Y, Krishnan AV, Friedlander ML, Kiernan MC (2009) Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J Clin Oncol 27(8):1243–1249

    Article  CAS  PubMed  Google Scholar 

  14. Gebremedhn EG, Shortland PJ, Mahns DA (2018) The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC Cancer 18(1):410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tanishima H, Tominaga T, Kimura M, Maeda T, Shirai Y, Horiuchi T (2017) Hyperacute peripheral neuropathy is a predictor of oxaliplatin-induced persistent peripheral neuropathy. Support Care Cancer 25(5):1383–1389

    Article  PubMed  Google Scholar 

  16. North RY, Lazaro TT, Dougherty PM (2018) Ectopic spontaneous afferent activity and neuropathic pain. Neurosurgery; 65(CN_suppl_1):49–54

    Google Scholar 

  17. Argyriou AA, Park SB, Bruna J, Cavaletti G (2019) Voltage-gated sodium channel dysfunction and the search for other satellite channels in relation to acute oxaliplatin-induced peripheral neurotoxicity. J Peripher Nerv Syst 24(4):360–361

    Article  PubMed  Google Scholar 

  18. Argyriou AA, Antonacopoulou AG, Alberti P et al (2019) Liability of the voltage-gated potassium channel KCNN3 repeat polymorphism to acute oxaliplatin-induced peripheral neurotoxicity. J Peripher Nerv Syst 24(4):298–303

    Article  CAS  PubMed  Google Scholar 

  19. Park SB, Lin CS, Kiernan MC (2012) Nerve excitability assessment in chemotherapy-induced neurotoxicity. JoVE (J Visual Exp) (62):e3439

    Google Scholar 

  20. Krishnan AV, Goldstein D, Friedlander M, Kiernan MC (2006) Oxaliplatin and axonal Na+ channel function in vivo. Clin Cancer Res 12(15):4481–4484

    Article  CAS  PubMed  Google Scholar 

  21. Webster RG, Brain KL, Wilson RH, Grem JL, Vincent A (2005) Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Br J Pharmacol 146(7):1027–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katirji B (2019) Peripheral nerve hyperexcitability. Handb Clin Neurol 161:281–290. Elsevier

    Article  PubMed  Google Scholar 

  23. Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Grem JL (2002) Acute oxaliplatin-induced peripheral nerve hyperexcitability. J Clin Oncol 20(7):1767–1774

    Article  CAS  PubMed  Google Scholar 

  24. Jacobson D, Herson PS, Neelands TR, Maylie J, Adelman JP (2002) SK channels are necessary but not sufficient for denervation-induced hyperexcitability. Muscle Nerve 26(6):817–822

    Article  PubMed  Google Scholar 

  25. Bennedsgaard K, Ventzel L, Grafe P et al (2020) Cold aggravates abnormal excitability of motor axons in oxaliplatin-treated patients. Muscle Nerve 61(6):796–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park SB, Lin CS-Y, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC (2009) Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain 132(10):2712–2723

    Article  PubMed  Google Scholar 

  27. Sittl R, Lampert A, Huth T et al (2012) Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype NaV1. 6-resurgent and persistent current. Proc Natl Acad Sci USA 109(17):6704–6709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loprinzi CL, Reeves BN, Dakhil SR et al (2011) Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol 29(11):1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asthana R, Zhang L, Wan BA et al (2020) Pain descriptors of taxane acute pain syndrome (TAPS) in breast cancer patients—a prospective clinical study. Support Care Cancer 28(2):589–598

    Article  PubMed  Google Scholar 

  30. Loprinzi CL, Maddocks-Christianson K, Wolf SL et al (2007) The paclitaxel acute pain syndrome: sensitization of nociceptors as the putative mechanism. Cancer J 13(6):399–403

    Article  PubMed  Google Scholar 

  31. Fernandes R, Mazzarello S, Hutton B et al (2016) Taxane acute pain syndrome (TAPS) in patients receiving taxane-based chemotherapy for breast cancer—a systematic review. Support Care Cancer 24(8):3633–3650

    Article  PubMed  Google Scholar 

  32. Reeves BN, Dakhil SR, Sloan JA et al (2012) Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer 118(20):5171–5178

    Article  PubMed  Google Scholar 

  33. Pachman DR, Dockter T, Zekan PJ et al (2017) A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support Care Cancer 25(11):3407–3416

    Article  PubMed  Google Scholar 

  34. Shinde SS, Seisler D, Soori G et al (2016) Can pregabalin prevent paclitaxel-associated neuropathy?— An ACCRU pilot trial. Support Care Cancer 24(2):547–553

    Article  PubMed  Google Scholar 

  35. Tamburin S, Park SB, Alberti P, Demichelis C, Schenone A, Argyriou AA (2019) Taxane and epothilone-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst 24:S40–S51

    Article  CAS  PubMed  Google Scholar 

  36. Chiu N, Chiu L, Chow R et al (2017) Taxane-induced arthralgia and myalgia: a literature review. J Oncol Pharm Pract 23(1):56–67

    Article  CAS  PubMed  Google Scholar 

  37. Moulder SL, Holmes FA, Tolcher AW et al (2010) A randomized phase 2 trial comparing 3-hour versus 96-hour infusion schedules of paclitaxel for the treatment of metastatic breast cancer. Cancer 116(4):814–821

    Article  CAS  PubMed  Google Scholar 

  38. Velasco R, Bruna J (2015) Taxane-induced peripheral neurotoxicity. Toxics 3(2):152–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schönherr A, Aivazova-Fuchs V, Annecke K et al (2012) Toxicity analysis in the ADEBAR trial: sequential anthracycline-taxane therapy compared with FEC120 for the adjuvant treatment of high-risk breast cancer. Breast Care 7(4):289–295

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martin M, Lluch A, Segui M et al (2006) Toxicity and health-related quality of life in breast cancer patients receiving adjuvant docetaxel, doxorubicin, cyclophosphamide (TAC) or 5-fluorouracil, doxorubicin and cyclophosphamide (FAC): impact of adding primary prophylactic granulocyte-colony stimulating factor to the TAC regimen. Ann Oncol 17(8):1205–1212

    Article  CAS  PubMed  Google Scholar 

  41. Lee KS, Ro J, Nam B-H et al (2008) A randomized phase-III trial of docetaxel/capecitabine versus doxorubicin/cyclophosphamide as primary chemotherapy for patients with stage II/III breast cancer. Breast Cancer Res Treat 109(3):481–489

    Article  CAS  PubMed  Google Scholar 

  42. Peters CM, Jimenez-Andrade JM, Jonas BM et al (2007) Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203(1):42–54

    Article  CAS  PubMed  Google Scholar 

  43. Janes K, Little JW, Li C et al (2014) The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem 289(30):21082–21097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Argyriou AA, Bruna J, Anastopoulou GG, Velasco R, Litsardopoulos P, Kalofonos HP (2020) Assessing risk factors of falls in cancer patients with chemotherapy-induced peripheral neurotoxicity. Support Care Cancer 28(4):1991–1995

    Article  PubMed  Google Scholar 

  45. Wolf SL, Barton DL, Qin R et al (2012) The relationship between numbness, tingling, and shooting/burning pain in patients with chemotherapy-induced peripheral neuropathy (CIPN) as measured by the EORTC QLQ-CIPN20 instrument, N06CA. Support Care Cancer 20(3):625–632

    Article  PubMed  Google Scholar 

  46. Loprinzi CL, Lacchetti C, Bleeker J et al (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 38(28):3325–3348

    Article  PubMed  Google Scholar 

  47. Albany C, Dockter T, Wolfe E et al (2021) Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724). Support Care Cancer 29(2):833–840

    Article  PubMed  Google Scholar 

  48. Dougherty PM, Cata JP, Cordella JV, Burton A, Weng H-R (2004) Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109(1-2):132–142

    Article  CAS  PubMed  Google Scholar 

  49. Pachman DR, Qin R, Seisler DK et al (2015) Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III trial N08CB (Alliance). J Clin Oncol 33(30):3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Argyriou AA, Kyritsis AP, Makatsoris T, Kalofonos HP (2014) Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Manag Res 6:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bokemeyer C, Berger CC, Kuczyk MA, Schmoll H-J (1996) Evaluation of long-term toxicity after chemotherapy for testicular cancer. J Clin Oncol 14(11):2923–2932

    Article  CAS  PubMed  Google Scholar 

  52. Talebian A, Goudarzi RM, Mohammadzadeh M, Mirzadeh AS (2014) Vincristine-induced cranial neuropathy. Iran J Child Neurol 8(1):66

    PubMed  PubMed Central  Google Scholar 

  53. Toker E, Yenice O, Oğüt MS (2004) Isolated abducens nerve palsy induced by vincristine therapy. J AAPOS 8(1):69–71

    Article  PubMed  Google Scholar 

  54. Wang WS (2000) Vincristine-induced dysphagia suggesting esophageal motor dysfunction: a case report. Jpn J Clin Oncol 30(11):515–518

    Article  CAS  PubMed  Google Scholar 

  55. Leker RR, Peretz T, Hubert A, Lossos A (1997) Vincristine-induced paralytic ileus in Parkinson’s disease. Parkinsonism Relat Disord 3(2):109–110

    Article  CAS  PubMed  Google Scholar 

  56. Naithani R, Dolai TK, Kumar R (2009) Bilateral vocal cord paralysis following treatment with vincristine. Indian Pediatr 46(1)

    Google Scholar 

  57. Tay CG, Lee VWM, Ong LC, Goh KJ, Ariffin H, Fong CY (2017) Vincristine-induced peripheral neuropathy in survivors of childhood acute lymphoblastic leukaemia. Pediatr Blood Cancer 64(8):e26471

    Article  CAS  Google Scholar 

  58. Okada N, Hanafusa T, Sakurada T et al (2014) Risk factors for early-onset peripheral neuropathy caused by vincristine in patients with a first administration of R-CHOP or R-CHOP-like chemotherapy. J Clin Med Res 6(4):252

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Verstappen C, Koeppen S, Heimans J et al (2005) Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 64(6):1076–1077

    Article  CAS  PubMed  Google Scholar 

  60. Broyl A, Corthals SL, Jongen JL et al (2010) Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol 11(11):1057–1065

    Article  CAS  PubMed  Google Scholar 

  61. Gregory R, Smith I (2000) Vinorelbine—a clinical review. Br J Cancer 82(12):1907–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frost BM, Lönnerholm G, Koopmans P et al (2003) Vincristine in childhood leukaemia: no pharmacokinetic rationale for dose reduction in adolescents. Acta Paediatr 92(5):551–557

    Article  CAS  PubMed  Google Scholar 

  63. Diouf B, Crews KR, Lew G et al (2015) Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313(8):815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cho J, Kang D, Lee JY, Kim K, Kim SJ (2014) Impact of dose modification on intravenous bortezomib-induced peripheral neuropathy in multiple myeloma patients. Support Care Cancer 22(10):2669–2675

    Article  PubMed  Google Scholar 

  65. Corso A, Mangiacavalli S, Varettoni M, Pascutto C, Zappasodi P, Lazzarino M (2010) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res 34(4):471–474

    Article  CAS  PubMed  Google Scholar 

  66. Rampen A, Jongen J, Van Heuvel I, Scheltens-de Boer M, Sonneveld P, van den Bent M (2013) Bortezomib-induced polyneuropathy. Age 57:1.29

    Google Scholar 

  67. Badros A, Goloubeva O, Dalal JS et al (2007) Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110(5):1042–1049

    Article  CAS  PubMed  Google Scholar 

  68. Lanzani F, Mattavelli L, Frigeni B et al (2008) Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J Peripher Nerv Syst 13(4):267–274

    Article  PubMed  Google Scholar 

  69. Popat R, Oakervee H, Williams C et al (2009) Bortezomib, low-dose intravenous melphalan, and dexamethasone for patients with relapsed multiple myeloma. Br J Haematol 144(6):887–894

    Article  CAS  PubMed  Google Scholar 

  70. Cavaletti G, Gilardini A, Canta A et al (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204(1):317–325

    Article  CAS  PubMed  Google Scholar 

  71. Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65(9):3828–3836

    Article  CAS  PubMed  Google Scholar 

  72. Ravaglia S, Corso A, Piccolo G et al (2008) Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol 119(11):2507–2512

    Article  CAS  PubMed  Google Scholar 

  73. Ropper AH, Gorson KC (1998) Neuropathies associated with paraproteinemia. N Engl J Med 338(22):1601–1607

    Article  CAS  PubMed  Google Scholar 

  74. Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24(19):3113–3120

    Article  CAS  PubMed  Google Scholar 

  75. Liu Z, Xia H, Li C, Xia L (2019) Incidence and Risk of Peripheral Neuropathy Caused by Intravenous and Subcutaneous Injection of Bortezomib. Zhongguo Shi Yan Xue Ye Xue Za Zhi 27(5):1654–1663

    PubMed  Google Scholar 

  76. Ye Z, Chen J, Xuan Z, Yang W, Chen J (2019) Subcutaneous bortezomib might be standard of care for patients with multiple myeloma: a systematic review and meta-analysis. Drug Des Dev Ther 13:1707

    Article  CAS  Google Scholar 

  77. Liew WK, Pacak CA, Visyak N, Darras BT, Bousvaros A, Kang PB (2016) Longitudinal patterns of thalidomide neuropathy in children and adolescents. J Pediatr 178:227–232

    Article  CAS  PubMed  Google Scholar 

  78. Chaudhry V, Cornblath DR, Corse A, Freimer M, Simmons-O’Brien E, Vogelsang G (2002) Thalidomide-induced neuropathy. Neurology 59(12):1872–1875

    Article  CAS  PubMed  Google Scholar 

  79. Attal N, Bouhassira D, Gautron M et al (2009) Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. PAIN® 144(3):245–252

    Google Scholar 

  80. Mileshkin L, Stark R, Day B, Seymour JF, Zeldis JB, Prince HM (2006) Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol 24(27):4507–4514

    Article  CAS  PubMed  Google Scholar 

  81. Bastuji-Garin S, Ochonisky S, Bouche P et al (2002) Incidence and risk factors for thalidomide neuropathy: a prospective study of 135 dermatologic patients. J Invest Dermatol 119(5):1020–1026

    Article  CAS  PubMed  Google Scholar 

  82. Palumbo A, Facon T, Sonneveld P et al (2008) Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111(8):3968–3977

    Article  CAS  PubMed  Google Scholar 

  83. Briani C, Torre CD, Campagnolo M et al (2013) Lenalidomide in patients with chemotherapy-induced polyneuropathy and relapsed or refractory multiple myeloma: results from a single-centre prospective study. J Peripher Nerv Syst 18(1):19–24

    Article  CAS  PubMed  Google Scholar 

  84. Nozza A, Terenghi F, Gallia F et al (2017) Lenalidomide and dexamethasone in patients with POEMS syndrome: results of a prospective, open-label trial. Br J Haematol 179(5):748–755

    Article  CAS  PubMed  Google Scholar 

  85. Aguiar PM, de Mendonça LT, Colleoni GWB, Storpirtis S (2017) Efficacy and safety of bortezomib, thalidomide, and lenalidomide in multiple myeloma: an overview of systematic reviews with meta-analyses. Crit Rev Oncol Hematol 113:195–212

    Article  PubMed  Google Scholar 

  86. Sakata Y, Matsuoka T, Ohashi S, Koga T, Toyoda T, Ishii M (2019) Use of a healthcare claims database for post-marketing safety assessments of Eribulin in Japan: a comparative assessment with a prospective post-marketing surveillance study. Drugs Real World Outcomes 6(1):27–35

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhao B, Zhao H, Zhao J (2018) Incidence and clinical parameters associated with eribulin mesylate-induced peripheral neuropathy. Crit Rev Oncol Hematol 128:110–117

    Article  PubMed  Google Scholar 

  88. Vahdat LT, Garcia AA, Vogel C et al (2013) Eribulin mesylate versus ixabepilone in patients with metastatic breast cancer: a randomized Phase II study comparing the incidence of peripheral neuropathy. Breast Cancer Res Treat 140(2):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aakash Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Argyriou, A.A., Desai, A., Loprinzi, C. (2021). Natural History of Chemotherapy-Induced Peripheral Neuropathy. In: Lustberg, M., Loprinzi, C. (eds) Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy. Springer, Cham. https://doi.org/10.1007/978-3-030-78663-2_1

Download citation

Publish with us

Policies and ethics