Skip to main content

Rigid Image Registration Based on Graph Matching

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Security (ICAIS 2021)

Abstract

Medical image registration is an important technology in medical image processing and analysis. It has important application value in guiding radiotherapy, radiosurgery, minimally invasive surgery, endoscopy, and interventional radiology. Rigidly aligning two images is used to register rigid body structure, and it is also usually the first step for deformable registration with a large discrepancy. In the field of computer vision, one well-established method for image alignment is to find corresponding points from two images, and image alignment is based on identified corresponding points. Our approach lies in this category. Feature matching is crucial in finding corresponding points. However, conventional feature matching, such as SIFT, fails to consider the structural information between features. In this paper, a rigid image registration algorithm based on hypergraph matching is proposed. First, perform rough matching feature through SIFT (Scale invariant feature transform); then, based on coarse feature matching, filter out abnormal points through the hypergraph matching method that considers the structural information between features to obtain the correct feature matching pair; finally pass the obtained feature matching is registered to the calculated conversion matrix. Experimental results show that this method's registration results are better than those of SIFT and MIND methods regardless of whether it is rotated or scaled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_2

    Chapter  Google Scholar 

  2. Hu, J., Sun, S., Yang, X., Zhou, S.: Towards accurate and robust multi-modal medical image registration using contrastive metric learning. IEEE Access. 7, 132816–132827 (2019)

    Article  Google Scholar 

  3. Woo, J., Stone, M., Prince, J.L.: Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Trans. Image Process. 24(2), 757–769 (2014)

    Article  Google Scholar 

  4. Padgett, K., et al.: SU‐F‐BRF‐10: deformable MRI to CT validation employing same day planning MRI for surrogate analysis. Med. Phys. 41(6Part23), 401 (2014)

    Google Scholar 

  5. Padgett, K.R., Stoyanova, R., Pirozzi, S., Johnson, P., Piper, J., Dogan, N.: Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis. J. Appl. Clin. Med. Phys. 19(2), 258–264 (2018)

    Article  Google Scholar 

  6. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  7. Toews, M., Zöllei, L., Wells, W.M.: Feature-based alignment of volumetric multi-modal images. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 25–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_3

    Chapter  Google Scholar 

  8. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  9. Glodeck, D., Hesser, J., Zheng, L.: Potential of metric homotopy between intensity and geometry information for multi-modal 3D registration. Z. Med. Phys. 28(4), 325–334 (2018)

    Article  Google Scholar 

  10. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 452–461. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-40899-4_46

    Chapter  Google Scholar 

  11. Zhao, D., Yang, Y., Ji, Z., Hu, X.: Rapid multimodality registration based on MM-SURF. Neurocomputing 131, 87–97 (2014)

    Article  Google Scholar 

  12. Lv, G., Teng, S.W., Lu, G.: Enhancing SIFT-based image registration performance by building and selecting highly discriminating descriptors. Pattern Recognit. Lett. 84, 156–162 (2016)

    Article  Google Scholar 

  13. Hossein-Nejad, Z., Nasri, M.: An adaptive image registration method based on SIFT features and RANSAC transform. Comput. Electr. Eng. 62, 524–537 (2017)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Fischler, M.A., Bolles, R.: C: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM. 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  17. Zhang, H., Ren, P.: Game theoretic hypergraph matching for multi-source image correspondences. Pattern Recognit. Lett. 87, 87–95 (2017)

    Article  Google Scholar 

  18. Umeyama, S.: An eigen decomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  Google Scholar 

  19. Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 456–463. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63460-6_150

    Chapter  Google Scholar 

  20. Zhou, F., De la Torre, F.: Factorized graph matching. In: IEEE Conference on Computer Vision and Pattern Recognition 2012, pp. 127–134. IEEE (2012)

    Google Scholar 

  21. Neemuchwala, H., Hero, A., Carson, P.: Image registration using entropic graph-matching criteria. In: Conference Record of the 36th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 134–138. IEEE (2002)

    Google Scholar 

  22. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 382–389. IEEE (2010)

    Google Scholar 

  23. Deng, K., Tian, J., Zheng, J., Zhang, X., Dai, X., Xu, M.: Retinal fundus image registration via vascular structure graph matching. Int. J. Biomed. Imaging 2010 (2010)

    Google Scholar 

  24. Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Am. Math. Soc. 73(3), 360–363 (1967)

    Article  MathSciNet  Google Scholar 

  25. Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V.: MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)

    Article  Google Scholar 

Download references

Funding

This work is supported in part by the Introduction Talent Research Start-up Pro-gram of Chengdu University of Information Technology (No. KYTZ202008), and in part by the Sichuan Science and Technology Program (2019YFH0085, 2019ZDZX0005, 2019YFG0196), and in part by the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (No. 19ZB0257).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, Z., Hu, J., Ye, B. (2021). Rigid Image Registration Based on Graph Matching. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Advances in Artificial Intelligence and Security. ICAIS 2021. Communications in Computer and Information Science, vol 1422. Springer, Cham. https://doi.org/10.1007/978-3-030-78615-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78615-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78614-4

  • Online ISBN: 978-3-030-78615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics