Skip to main content

Optimizing Rare Disease Registries and Natural History Studies

  • Chapter
  • First Online:
Rare Disease Drug Development
  • 607 Accesses

Abstract

A pervasive challenge to drug development in rare diseases is understanding and documenting their trajectories so that the effectiveness of new therapies can be measured against the lack of intervention. Lack of participants, lack of funding, data silos, duplicative efforts, data quality issues, and differing data standards all conspire to make scarce patient data even scarcer. As the focus on rare disease as a major unmet medical need increases, creative solutions from private, public, and combination consortia are evolving to tackle these problems. Common approaches include centralized multi-indication databases with common data elements to leverage economies of scale and federated models of data aggregation that overlay the intact source data with a common data lexicon. Aligning incentives between those seeking to use the data and the developers of the data in such a way that these efforts are supported consistently remains an unsolved challenge in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellgard M, Beroud C, Parkinson K, Harris T, Ayme S, Baynam, et al. Dispelling myths about rare disease registry system development. Source Code Biol Med. 2013;8:21. https://doi.org/10.1186/1751-0473-8-21.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boulanger V, Schlemmer M, Rossov S, Seebald A, Gavin P. Establishing patient registries for rare diseases: rationale and challenges. Pharm Med. 2020;34:185–90. https://doi.org/10.1007/s40290-020-00332-1.

    Article  Google Scholar 

  3. Gliklich R, Dreyer N, Leavy M, eds. Registries for Evaluating Patient Outcomes: A User’s Guide. Third edition. Two volumes. (Prepared by the Outcome DEcIDE Center [Outcome Sciences, Inc., a Quintiles company] under Contract No. 290 2005 00351 TO7.) AHRQ Publication No. 13(14)-EHC111. Rockville, MD: Agency for Healthcare Research and Quality. April 2014. http://www.effectivehealthcare.ahrq.gov/registries-guide-3.cfm.

  4. Rare Diseases Collection. In: Orphanet report series. 2020. http://www.orpha.net/orphacom/cahiers/docs/GB/Registries.pdf. Accessed 7 Feb 2021.

  5. Rare diseases: natural history studies for drug development guidance for industry. https://www.fda.gov/media/122425/download. Accessed 6 Feb 2021.

  6. Bellgard M, Snelling T, McGree J. RD-RAP: beyond rare disease patient registries, devising a comprehensive data and analytic framework. Orphanet J Rare Diseases. 2019;14:176. https://doi.org/10.1186/s13023-019-1139-9.

    Article  Google Scholar 

  7. Section 9: Natural history and spectrum of disease. Lesson 1: introduction to epidemiology. In: Principles of epidemiology in public health practice, third edition: An introduction to applied epidemiology and biostatistics. Centers for Disease Control and Prevention, editor. https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section9.html. Accessed 7 Feb 2021.

  8. Jansen-van der Weide M, Gaasterland C, Roes KC, Pontes C, Vives R, Sancho A, et al. Rare disease registries: potential applications towards impact on development of new drug treatments. Orphanet J Rare Dis. 2018;13:154. https://doi.org/10.1186/s13023-018-0836-0.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mercuri EM, Signorovitch JE, Swallow E, Song J, Ward SJ for DMD Italian Group and Collaborative Trajectory Analysis Project (cTAP). Categorizing natural history trajectories of ambulatory function measured by the 6-minute walk distance in patients with Duchenne muscular dystrophy. Neuromuscular Disorders. 2016;(26):576–83. https://doi.org/10.1016/j.nmd.2016.05.016.

  10. Bratton E, Holt C, Kromrey S, Keefer J. Natural history studies for rare diseases: development strategies for external comparator arms leveraging real world insights. IQVIA Library. 2020. https://www.iqvia.com/library/white-papers/natural-history-studies-for-rare-diseases. Accessed 2 Feb 2021.

  11. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22. https://doi.org/10.1056/NEJMoa1706198.

    Article  CAS  PubMed  Google Scholar 

  12. Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82:883–91. https://doi.org/10.1002/ana.25101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Novartis receives approval from Japanese Ministry of Health, Labour and Welfare for Zolgensma® the only gene therapy for patients with spinal muscular atrophy. Novartis. 2019. https://www.novartis.com/news/media-releases/novartis-receives-approval-from-japanese-ministry-health-labour-and-welfare-zolgensma-only-gene-therapy-patients-spinal-muscular-atrophy-sma. Accessed 7 Feb 2021.

  14. Summary basis for regulatory action – Zolgensma. 2019. https://www.fda.gov/media/127961/download. Accessed 7 Feb 2021.

  15. Zolgensma. European medicines agency. https://www.ema.europa.eu/en/medicines/human/EPAR/zolgensma. Accessed 7 Feb 2021.

  16. Hollak C, Sirrs S, van den Berg S, van der Wel V, Langeveld M, Dekker H, et al. Registries for orphan drugs: generating evidence or marketing tools? Orphanet J of Rare Diseases. 2020;15:235. https://doi.org/10.1186/s13023-020-01519-0.

    Article  Google Scholar 

  17. Alexander M, de Renteria J, Macdonald A, Rosner A, McDevitt M, Thompson D. Real world value: advancing payer understanding of RWE in rare disease. Syneos Health. https://syneoshealthcommunications.com/perspectives/real-world-value-advancing-payer-understanding-of-rwe-in-rare-disease. Accessed 1 Feb 2021.

  18. Framework for FDA’s Real-World Evidence Program. US Food and Drug Administration. https://www.fda.gov/media/120060/download. Accessed 6 Feb 2021.

  19. Expedited programs for regenerative medicine therapies for serious conditions. US Food and Drug Administration. https://www.fda.gov/media/120267/download. Accessed 7 Feb 2021.

  20. Waddill K. 2020. https://healthpayerintelligence.com/news/how-payer-value-based-contracts-seek-to-cut-gene-therapy-costs. Accessed 6 Feb 2021.

  21. Pavan S, Rommel K, Mateo Marquina ME, Ho S, Lanneau V, Rath A. Clinical practice guidelines for rare diseases: the orphanet database. PLoS One. 2017;12(1):e0170365. https://doi.org/10.1371/journal.pone.0170365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 2019 Patient Registry Annual Data Report. Cystic Fibrosis Foundation. https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2019-Patient-Registry-Annual-Data-Report.pdf. Accessed 6 Feb 2021.

  23. Expanding the science of patient input: building smarter patient registries. Reports. Milken Institute Faster Cures. 2016. https://www.fastercures.org/assets/Uploads/PDF/Patient-Registries.pdf/. Accessed 7 Feb 2021.

  24. Fink K, Loeffler DR, Marshall BC, Goss CH, Morgan WJ. Data that empower: the success and promise of CF patient registries. Ped Pulmon. 2017;52:S44–51. https://doi.org/10.1002/ppul.23790.

    Article  Google Scholar 

  25. Koeks Z, Bladen CL, Salgado D, van Zwet E, Pogoryelova O, McMacken G, et al. Clinical outcomes in duchenne muscular dystrophy: a study of 5345 patients from the TREAT-NMD DMD global database. J Neuromuscul Dis. 2017;4(4):293–306. https://doi.org/10.3233/JND-170280.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang RT, Nelson SF. What can Duchenne connect teach us about treating Duchenne muscular dystrophy? Curr Opin Neurol. 2015;28(5):535–41. https://doi.org/10.1097/WCO000000000000245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia F. Rare disease registries: advancing disease understanding, treatments and cures. Rare Toolkits. Global Genes. 2020. https://globalgenes.happyfox.com/kb/article/23-rare-disease-registries-advancing-disease-understanding-treatments-and-cures/. Accessed 1 Feb 2021.

  28. Sernadela P, González-Castro L, Carta C, van der Horst E, Lopes P, Kaliyaperumal R, et al. Linked registries: connecting rare diseases patient registries through a semantic web layer. Biomed Res Int. 2017; https://doi.org/10.1155/2017/8327980.

  29. Clinical outcome measures in Friedreich’s ataxia: a natural history study. Friedreich’s Ataxia Research Alliance. 2019. https://curefa.org/clinical-trials/clinical-trials-active-enrolling/clinical-outcome-measures-in-friedreich-s-ataxia-a-natural-history-study. Accessed 6 Feb 2021.

  30. Rummey C, Farmer JM, Lynch DR. Predictors of loss of ambulation in Friedreich’s ataxia. E Clin Med. 2020;18:100213. https://doi.org/10.1016/j.eclinm.2019.11.006.

    Article  Google Scholar 

  31. MOVR Data Hub (neuroMuscular ObserVational Research). Muscular dystrophy association. https://www.mda.org/science/movr-data-hub-neuromuscular-observational-research. Accessed 7 Feb 2021.

  32. Muscular Dystrophy Research and Tracking – MDSTARnet. Centers for Disease Control. https://www.cdc.gov/ncbddd/musculardystrophy/research.html. Accessed 6 Feb 2021.

  33. The Duchenne Registry. Parent project muscular dystrophy. https://www.duchenneregistry.org/. Accessed 7 Feb 2021.

  34. Knapp EA, Fink AK, Goss CH, Sewall A, Ostrenga J, Dowd C, et al. The cystic fibrosis foundation patient registry: design and methods of a national observational disease registry. Ann Am Thorac Soc. 2016;13(7):173–1179. https://doi.org/10.1513/AnnalsATS.201511-781OC.

    Article  Google Scholar 

  35. Patient registry data requests. Cystic Fibrosis Foundation. https://www.cff.org/Research/Researcher-Resources/Tools-and-Resources/Patient-Registry-Data-Requests/. Accessed 7 Feb 2021.

  36. Aitken M, Kleinrock M. Orphan Drugs in the United States. IQVIA Institute for Human Data Science. 2018. https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/orphan-drugs-in-the-united-states-growth-trends-in-rare-disease-treatments.pdf?_=1612762723809. Accessed 7 Feb 2021.

  37. Cole AJ, Taylor JS, Hangartner TN, Weinreb NJ, Mistry PK, Khan A. Reducing selection bias in case-control studies from rare disease registries. Orphanet J of Rare Disease. 2011;6:61. https://doi.org/10.1186/1750-1172-6-61.

    Article  Google Scholar 

  38. Kodra Y, Weinbach J, Posada-de-la-Paz M, Coi A, Lemonnier SL, van Enckevort D, et al. Recommendations for improving the quality of rare disease registries. Int J Environ Res Pub Health. 2018;15:1644. https://doi.org/10.3390/ijerph15081644.

    Article  Google Scholar 

  39. PIN Infographic Director. Invitae. https://pindirectory.invitae.com/infographic. Accessed 7 Feb 2021.

  40. Bellgard MI, Render L, Radochonski M, Hunter A. Second generation registry framework. Source Code Biol Med. 2014;9:14. https://doi.org/10.1186/1751-0473-9-14.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Registry of Patient Registries (RoPR). Agency for healthcare research and quality. https://effectivehealthcare.ahrq.gov/products/registry-of-patient-registries/abstract. Accessed 2 Feb 2021.

  42. Kidwell MC, Lazarević LB, Baranski E, Hardwick TE, Piechowski S, Falkenberg L-S, et al. Badges to acknowledge open practices: a simple, low-cost effective method for increasing transparency. PLoS Biol. 2016; https://doi.org/10.1371/journal.pbio.1002456.

  43. Hopkins A, Rowland A, Sorich M. Data sharing from pharmaceutical industry sponsored clinical studies: audit of data availability. BMC Med. 2018;16:165. https://doi.org/10.1186/s12916-018-1154-z.

    Article  PubMed  PubMed Central  Google Scholar 

  44. PhRMA Principles for clinical data sharing. PhRMA. 2013. https://www.phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF/P-R/PhRMAPrinciplesForResponsibleClinicalTrialDataSharing.pdf. Accessed 7 Feb 2021.

  45. Project Data Sphere. CEO Roundtable on Cancer. https://www.projectdatasphere.org/. Accessed 7 Feb 2021.

  46. The YODA Project. Yale University. https://yoda.yale.edu/. Accessed 7 Feb 2021.

  47. Vivli. Center for global clinical research data. https://vivli.org/. Accessed 7 Feb 2021.

  48. 21st Century Cures Act. Public Law 114–255. 114th Congress. https://www.govinfo.gov/content/pkg/PLAW-114publ255/pdf/PLAW-114publ255.pdf. Accessed 7 Feb 2021.

  49. Coordination of Rare Diseases at Sanford (CoRDS). Sanford Research. research.sanfordhealth.org/rare-disease-registry. Accessed 2 Feb 2021.

  50. Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, et al. The TREAT-NMD Duchenne muscular dystrophy registries: conception, design and utilization by industry and academia. Hum Mut. 2013;34(11):1449–57. https://doi.org/10.1002/humu.22390.

    Article  PubMed  Google Scholar 

  51. Global DMD registry statistics. TREAT-NMD. 2013. https://treat-nmd.org/patient-registries/what-are-the-treat-nmd-global-registries/global-dmd-registry-statistics/. Accessed 7 Feb 2021.

  52. Global Registry enquires. TREAT-NMD. https://treat-nmd.org/patient-registries/what-are-the-treat-nmd-global-registries/registry-enquiries/. Accessed 7 Feb 2021.

  53. Core Competencies of the Critical Path Institute. Critical Path Institute. https://c-path.org/core-competencies/. Accessed 7 Feb 2021.

  54. Qualification opinion of a novel data driven model of disease progression and trial evaluation in mild and moderate Alzheimer’s disease. European Medicines Agency. 2013. https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/draft-qualification-opinion-novel-data-driven-model-disease-progression-trial-evaluation-mild_en.pdf. Accessed 7 Feb 2021.

  55. Qualification opinion: Total kidney volume (TKV) as a prognostic biomarker for use in clinical trials evaluating patients with autosomal dominant polycystic kidney disease (ADPKD). 2015. https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-opinion-total-kidney-volume-tkv-prognostic-biomarker-use-clinical-trials-evaluating_en.pdf. Accessed 7 Feb 2021.

  56. Reviews: Qualification of biomarker: Total kidney volume in studies for treatment of autosomal dominant polycystic kidney disease. US Food and Drug Administration. 2015. https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/reviews-qualification-biomarker-total-kidney-volume-studies-treatment-autosomal-dominant-polycystic. Accessed 7 Feb 2021.

  57. Trial simulation tool for Alzheimer’s disease. FDA determination letter. 2013. https://www.fda.gov/media/98856/download. Accessed 7 Feb 2021.

  58. Funded by FDA, C-Path and NORD to launch rare disease data and analytics platform. Critical Path Institute. 2019. https://c-path.org/c-path-and-nord-to-launch-fda-funde d-rare-disease-data-analy tics-platf orm/. Accessed 7 Feb 2021.

  59. RaDaR Rare Disease Registry Program. National center for advancing translational sciences. National Institutes of Health. https://registries.ncats.nih.gov/. Accessed 5 Feb 2021.

  60. Krumholz H. Registries and selection bias: the need for accountability. Circ Cardiovasc Qual Outcomes. 2009;2(5):517–8. https://doi.org/10.1161/CIRCOUTCOMES.109.916601.

    Article  PubMed  Google Scholar 

  61. General Data Protection Regulation (GDPR). 2018. https://gdpr.eu/tag/gdpr/. Accessed 7 Feb 2021.

  62. Summary of the HIPAA Privacy Rule. Health and human services. 2003. https://www.hhs.gov/sites/default/files/privacysummary.pdf. Accessed 7 Feb 2021.

  63. FITBIR (Federal Interagency Traumatic Brain Injury Research) informatic system. National Institutes of Health. https://fitbir.nih.gov/content/global-unique-identifier/. Accessed 7 Feb 2021.

  64. Global Unique Identifier. RaDaR Rare Disease Registry Program. National Institutes of Health. https://rarediseases.info.nih.gov/radar/global-unique-identifier-generator. Accessed 7 Feb 2021.

  65. Maaroufi M, Landais P, Messiaen C, Jaulent M-C, Choquet R. Federating patients identities: the case of rare diseases. Orphanet J Rare Disease. 2018;13:199. https://doi.org/10.1186/s13023-018-0948-6.

    Article  Google Scholar 

  66. Neurological Global Unique Identifier (NeuroGUID). https://ncri0.partners.org/GUID/. Accessed 7 Feb 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Hesterlee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hesterlee, S. (2021). Optimizing Rare Disease Registries and Natural History Studies. In: Huml, R.A. (eds) Rare Disease Drug Development. Springer, Cham. https://doi.org/10.1007/978-3-030-78605-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78605-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78604-5

  • Online ISBN: 978-3-030-78605-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics