Skip to main content

Task Allocation: Contemporary Methods for Assigning Human–Robot Roles

  • Chapter
  • First Online:
The 21st Century Industrial Robot: When Tools Become Collaborators

Abstract

Human Robot Collaboration (HRC) is considered as a major enabler for achieving flexibility and reconfigurability in modern production systems. The motivation for HRC applications arises from the potential of combining human operators’ cognition and dexterity with the robot’s precision, repeatability and strength that can increase system’s adaptability and performance at the same time. To exploit this synergy effect on its full extent, production engineers must be equipped with the means for optimally allocating the tasks to the available resources as well as setting up appropriate workplaces to facilitate HRC. This chapter discusses existing approaches and methods for task planning in HRC environments analysing the requirements for implementing such decision-making strategies. The chapter also highlights future trends for progressing beyond the state of the art on this scientific field, exploiting the latest advances in Artificial Intelligence and Digital Twin techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chryssolouris G (2006) Manufacturing systems: theory and practice. Springer-Verlag, New York

    Google Scholar 

  2. Michalos G, Kousi N, Makris S, Chryssolouris G (2016) Performance assessment of production systems with mobile robots. Proced CIRP 41:195–200. https://doi.org/10.1016/j.procir.2015.12.097

    Article  Google Scholar 

  3. Michalos G, Makris S, Chryssolouris G (2015) The new assembly system paradigm. Int J Comput Integr Manuf 28:1252–1261. https://doi.org/10.1080/0951192X.2014.964323

    Article  Google Scholar 

  4. Michalos G, Makris S, Papakostas N, Mourtzis D, Chryssolouris G (2010) Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J Manuf Sci Technol 2:81–91. https://doi.org/10.1016/j.cirpj.2009.12.001

    Article  Google Scholar 

  5. Kousi N, Michalos G, Aivaliotis S, Makris S (2018) An outlook on future assembly systems introducing robotic mobile dual arm workers. Proced CIRP 72:33–38. https://doi.org/10.1016/j.procir.2018.03.130

    Article  Google Scholar 

  6. Hall A, Tiemann M, Herget H, Rohrbach-Schmidt D, Seyfried B, Troltsch K, Inez Weller S, Braun U, Leppelmeier I, Martin P, Dorau R (2012) BIBB/BAuA-Erwerbstätigenbefragung Arbeit und Beruf im Wandel, Erwerb und Verwertung beruflicher Qualifikationen

    Google Scholar 

  7. Nikolakis N, Kousi N, Michalos G, Makris S (2018) Dynamic scheduling of shared human-robot manufacturing operations. Proced CIRP 72:9–14. https://doi.org/10.1016/j.procir.2018.04.007

    Article  Google Scholar 

  8. Michalos G, Makris S, Spiliotopoulos J, Misios I, Tsarouchi P, Chryssolouris G (2014) Robo-partner: seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Proced CIRP 23:71–76. https://doi.org/10.1016/j.procir.2014.10.079

    Article  Google Scholar 

  9. Gkournelos C, Kousi N, Christos Bavelos A, Aivaliotis S, Giannoulis C, Michalos G, Makris S (2019) Model based reconfiguration of flexible production systems. Proced CIRP 86:80–85. https://doi.org/10.1016/j.procir.2020.01.042

    Article  Google Scholar 

  10. Michalos G, Makris S, Tsarouchi P, Guasch T, Kontovrakis D, Chryssolouris G (2015) Design considerations for safe human-robot collaborative workplaces. Proced CIRP 37:248–253. https://doi.org/10.1016/j.procir.2015.08.014

    Article  Google Scholar 

  11. Ji Z, Qiu R, Noyvirt A, Soroka A, Packianather M, Setchi R, Li D, Xu S (2012) Towards automated task planning for service robots using semantic knowledge representation. In: IEEE 10th international conference on industrial informatics. IEEE, Beijing, China, pp 1194–1201

    Google Scholar 

  12. Bicchi A, Peshkin MA, Colgate JE (2008) Safety for physical human-robot interaction. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1335–1348

    Chapter  Google Scholar 

  13. Kulić D, Croft EA (2006) Real-time safety for human–robot interaction. Robot Auton Syst 54:1–12. https://doi.org/10.1016/j.robot.2005.10.005

    Article  Google Scholar 

  14. Makris S, Tsarouchi P, Surdilovic D, Krüger J (2014) Intuitive dual arm robot programming for assembly operations. CIRP Ann 63:13–16. https://doi.org/10.1016/j.cirp.2014.03.017

    Article  Google Scholar 

  15. Matthaiakis SA, Dimoulas K, Athanasatos A, Mparis K, Dimitrakopoulos G, Gkournelos C, Papavasileiou A, Fousekis N, Papanastasiou S, Michalos G, Angione M, Makris S (2017) Flexible programming tool enabling synergy between human and robot. Modena, Italy

    Google Scholar 

  16. Surdilovic D, Yakut Y, Nguyen T-M, Pham XB, Vick A, Martin-Martin R (2010) Compliance control with dual-arm humanoid robots: design, planning and programming. In: 2010 10th IEEE-RAS international conference on humanoid robots. IEEE, Nashville, TN, pp 275–281

    Google Scholar 

  17. Schmidt B, Wang L (2013) Contact-less and programming-less human-robot collaboration. Proced CIRP 7:545–550. https://doi.org/10.1016/j.procir.2013.06.030

    Article  Google Scholar 

  18. Makris S, Karagiannis P, Koukas S, Matthaiakis A-S (2016) Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann 65:61–64. https://doi.org/10.1016/j.cirp.2016.04.038

    Article  Google Scholar 

  19. Gkournelos C, Karagiannis P, Kousi N, Michalos G, Koukas S, Makris S (2018) Application of wearable devices for supporting operators in human-robot cooperative assembly tasks. Proced CIRP 76:177–182. https://doi.org/10.1016/j.procir.2018.01.019

    Article  Google Scholar 

  20. Cherubini A, Passama R, Crosnier A, Lasnier A, Fraisse P (2016) Collaborative manufacturing with physical human–robot interaction. Robot Comput-Integr Manuf 40:1–13. https://doi.org/10.1016/j.rcim.2015.12.007

    Article  Google Scholar 

  21. Goodrich MA, Schultz AC (2007) human-robot interaction: a survey. Found Trends® Hum-Comput Interact 1:203–275. https://doi.org/10.1561/1100000005

  22. Argyrou A, Giannoulis C, Sardelis A, Karagiannis P, Michalos G, Makris S (2018) A data fusion system for controlling the execution status in human-robot collaborative cells. Proced CIRP 76:193–198. https://doi.org/10.1016/j.procir.2018.01.012

    Article  Google Scholar 

  23. Karagiannis P, Giannoulis C, Michalos G, Makris S (2018) Configuration and control approach for flexible production stations. Proced CIRP 78:166–171. https://doi.org/10.1016/j.procir.2018.09.053

    Article  Google Scholar 

  24. Michalos G, Kousi N, Karagiannis P, Gkournelos C, Dimoulas K, Koukas S, Mparis K, Papavasileiou A, Makris S (2018) Seamless human robot collaborative assembly—an automotive case study. Mechatronics 55:194–211. https://doi.org/10.1016/j.mechatronics.2018.08.006

    Article  Google Scholar 

  25. Tsarouchi P, Michalos G, Makris S, Athanasatos T, Dimoulas K, Chryssolouris G (2017) On a human-robot workplace design and task allocation system. Int J Comput Integr Manuf 1–8. https://doi.org/10.1080/0951192X.2017.1307524

  26. Malik AA, Bilberg A (2019) Complexity-based task allocation in human-robot collaborative assembly. Ind Robot Int J Robot Res Appl 46:471–480. https://doi.org/10.1108/IR-11-2018-0231

    Article  Google Scholar 

  27. Michalos G, Spiliotopoulos J, Makris S, Chryssolouris G (2018) A method for planning human robot shared tasks. CIRP J Manuf Sci Technol 22:76–90. https://doi.org/10.1016/j.cirpj.2018.05.003

    Article  Google Scholar 

  28. Tsarouchi P, Spiliotopoulos J, Michalos G, Koukas S, Athanasatos A, Makris S, Chryssolouris G (2016) A decision making framework for human robot collaborative workplace generation. Proced CIRP 44:228–232. https://doi.org/10.1016/j.procir.2016.02.103

    Article  Google Scholar 

  29. Järvenpää E, Siltala N, Hylli O, Lanz M (2019) Implementation of capability matchmaking software facilitating faster production system design and reconfiguration planning. J Manuf Syst 53:261–270. https://doi.org/10.1016/j.jmsy.2019.10.003

    Article  Google Scholar 

  30. Zhang H-C, Alting L (1994) Computerized manufacturing process planning systems, 1st edn. Chapman & Hall, London ; New York

    Google Scholar 

  31. Bikas C, Argyrou A, Pintzos G, Giannoulis C, Sipsas K, Papakostas N, Chryssolouris G (2016) An automated assembly process planning system. Proced CIRP 44:222–227. https://doi.org/10.1016/j.procir.2016.02.085

    Article  Google Scholar 

  32. Shoval S, Efatmaneshnik M, Ryan MJ (2017) Assembly sequence planning for processes with heterogeneous reliabilities. Int J Prod Res 55:2806–2828. https://doi.org/10.1080/00207543.2016.1213449

    Article  Google Scholar 

  33. Wang L (2007) Process planning and scheduling for distributed manufacturing. Springer, London

    Book  Google Scholar 

  34. Pintzos G, Matsas M, Papakostas N, Mourtzis D (2016) Disassembly line planning through the generation of end-of-life handling information from design files. Proced CIRP 57:740–745. https://doi.org/10.1016/j.procir.2016.11.128

    Article  Google Scholar 

  35. Tsarouchi P, Makris S, Chryssolouris G (2016) On a human and dual-arm robot task planning method. Proced CIRP 57:551–555. https://doi.org/10.1016/j.procir.2016.11.095

    Article  Google Scholar 

  36. Alami R, Clodic A, Montreuil V, Sisbot EA, Chatila R (2005) Task planning for human-robot interaction. In: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence innovative context-aware services: usages and technologies—sOc-EUSAI ’05. ACM Press, Grenoble, France, p 81

    Google Scholar 

  37. Bidot J, Karlsson L, Lagriffoul F, Saffiotti A (2017) Geometric backtracking for combined task and motion planning in robotic systems. Artif Intell 247:229–265. https://doi.org/10.1016/j.artint.2015.03.005

    Article  MathSciNet  MATH  Google Scholar 

  38. Cesta A, Orlandini A, Umbrico A (2018) fostering robust human-robot collaboration through AI task planning. Procedia CIRP 72:1045–1050. https://doi.org/10.1016/j.procir.2018.03.022

    Article  Google Scholar 

  39. Lozano-Perez T, Jones JL, Mazer E, O’Donnell PA (1989) Task-level planning of pick-and-place robot motions. Computer 22:21–29. https://doi.org/10.1109/2.16222

    Article  Google Scholar 

  40. Mishra A, Bhuyan S, Agrawal S, Deb S, Sen D Task level planning and implementation of robotic assembly under machine vision guidance

    Google Scholar 

  41. Muñoz P, R-Moreno MD, Barrero DF, (2016) Unified framework for path-planning and task-planning for autonomous robots. Robot Auton Syst 82:1–14. https://doi.org/10.1016/j.robot.2016.04.010

    Article  Google Scholar 

  42. Müller R, Vette M, Geenen A (2017) Skill-based dynamic task allocation in human-robot-cooperation with the example of welding application. Proced Manuf 11:13–21. https://doi.org/10.1016/j.promfg.2017.07.113

    Article  Google Scholar 

  43. Kousi N, Dimosthenopoulos D, Matthaiakis A-S, Michalos G, Makris S (2019) AI based combined scheduling and motion planning in flexible robotic assembly lines. Proced CIRP 86:74–79. https://doi.org/10.1016/j.procir.2020.01.041

    Article  Google Scholar 

  44. Seder M, Petrović L, Peršić J, Popović G, Petković T, Šelek A, Bićanić B, Cvišić I, Josić D, Marković I, Petrović I, Muhammad A (2019) open platform based mobile robot control for automation in manufacturing logistics. IFAC-Pap 52:95–100. https://doi.org/10.1016/j.ifacol.2019.11.055

    Article  Google Scholar 

  45. Pellegrinelli S, Orlandini A, Pedrocchi N, Umbrico A, Tolio T (2017) Motion planning and scheduling for human and industrial-robot collaboration. CIRP Ann 66:1–4. https://doi.org/10.1016/j.cirp.2017.04.095

    Article  Google Scholar 

  46. Michalos G, Kaltsoukalas K, Aivaliotis P, Sipsas P, Sardelis A, Chryssolouris G (2014) Design and simulation of assembly systems with mobile robots. CIRP Ann 63:181–184. https://doi.org/10.1016/j.cirp.2014.03.102

    Article  Google Scholar 

  47. Chen F, Sekiyama K, Sasaki H, Huang J, Sun B, Fukuda T (2011) Assembly strategy modeling and selection for human and robot coordinated cell assembly. 2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE, San Francisco, CA, pp 4670–4675

    Chapter  Google Scholar 

  48. Zhang D (1991) Planning with Pr/T nets. In: Proceedings 1991 IEEE international conference on robotics and automation. IEEE Computer Society Press, Sacramento, CA, USA, pp 769–775

    Google Scholar 

  49. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  50. Agostini A, Torras C, Wörgötter F (2011) Integrating task planning and interactive learning for robots to work in human environments. In: Proceedings of the 22nd international joint conference on artificial intelligence. Barcelona, Catalonia, Spain

    Google Scholar 

  51. Maurtua I, Ibarguren A, Kildal J, Susperregi L, Sierra B (2017) Human–robot collaboration in industrial applications: safety, interaction and trust. Int J Adv Robot Syst 14:172988141771601. https://doi.org/10.1177/1729881417716010

    Article  Google Scholar 

  52. Agostini AG, Torras C, Wörgötter FA. General strategy for interactive decision-making in robotic platforms. Institut de Robotica i Informatica Industrial

    Google Scholar 

  53. Bicho E, Erlhagen W, Louro L, Costa e Silva E, (2011) Neuro-cognitive mechanisms of decision making in joint action: a human–robot interaction study. Hum Mov Sci 30:846–868. https://doi.org/10.1016/j.humov.2010.08.012

    Article  Google Scholar 

  54. Tsarouchi P, Matthaiakis A-S, Makris S, Chryssolouris G (2017) On a human-robot collaboration in an assembly cell. Int J Comput Integr Manuf 30:580–589. https://doi.org/10.1080/0951192X.2016.1187297

    Article  Google Scholar 

  55. Michalos G, Sipsas P, Makris S, Chryssolouris G (2016) Decision making logic for flexible assembly lines reconfiguration. Robot Comput-Integr Manuf 37:233–250. https://doi.org/10.1016/j.rcim.2015.04.006

    Article  Google Scholar 

  56. Weßkamp V, Seckelmann T, Barthelmey A, Kaiser M, Lemmerz K, Glogowski P, Kuhlenkötter B, Deuse J (2019) Development of a sociotechnical planning system for human-robot interaction in assembly systems focusing on small and medium-sized enterprises. Procedia CIRP 81:1284–1289. https://doi.org/10.1016/j.procir.2019.04.014

    Article  Google Scholar 

  57. Bochmann L, Bänziger T, Kunz A, Wegener K (2017) Human-robot collaboration in decentralized manufacturing systems: an approach for simulation-based evaluation of future intelligent production. Proced CIRP 62:624–629. https://doi.org/10.1016/j.procir.2016.06.021

    Article  Google Scholar 

  58. Malik AA, Bilberg A (2017) Framework to implement collaborative robots in manual assembly: a lean automation approach. In: Katalinic B (ed) DAAAM Proceedings, 1st edn. DAAAM International Vienna, pp 1151–1160

    Google Scholar 

  59. Unhelkar VV, Dorr S, Bubeck A, Przemyslaw AL, Perez J, Siu HC, Boerkoel Jr JC, Tyroller Q, Bix J, Bartscher S, Shah JA (2018) introducing mobile robots to moving-floor assembly lines: design, evaluation and deployment

    Google Scholar 

  60. (2020) Unlocking the potential of industrial human–robot collaboration: a vision on industrial collaborative robots for economy and society. Publications Office, LU

    Google Scholar 

  61. Kaltsoukalas K, Makris S, Chryssolouris G (2015) On generating the motion of industrial robot manipulators. Robot Comput-Integr Manuf 32:65–71. https://doi.org/10.1016/j.rcim.2014.10.002

    Article  Google Scholar 

  62. Kardos C, Kovács A, Váncza J (2017) Decomposition approach to optimal feature-based assembly planning. CIRP Ann 66:417–420. https://doi.org/10.1016/j.cirp.2017.04.002

    Article  Google Scholar 

  63. Cesta A, Orlandini A, Bernardi G, Umbrico A (2016) Towards a planning-based framework for symbiotic human-robot collaboration. In: 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA). IEEE, Berlin, Germany, pp 1–8

    Google Scholar 

  64. Kousi N, Gkournelos C, Aivaliotis S, Giannoulis C, Michalos G, Makris S (2019) Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Proced Manuf 28:121–126. https://doi.org/10.1016/j.promfg.2018.12.020

    Article  Google Scholar 

  65. Magrini E, De Luca A (2017) Human-robot coexistence and contact handling with redundant robots. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, Vancouver, BC, pp 4611–4617

    Google Scholar 

  66. URL SHAREWORK EU Project. https://sharework-project.eu/. Accessed 9 Aug 2020

  67. Orlandini A, Cialdea Mayer M, Umbrico A, Cesta A (2020) Design of timeline-based planning systems for safe human-robot collaboration. In: Vallati M, Kitchin D (eds) Knowledge engineering tools and techniques for AI planning. Springer International Publishing, Cham, pp 231–248

    Chapter  Google Scholar 

  68. URL SHERLOCK EU Project. https://sherlock-project.eu/. Accessed 9 Aug 2020

  69. Cencen A, van Deurzen K, Verlinden JC, Geraedts JMP (2014) Exploring human robot coproduction. In: Proceedings of the 2014 IEEE emerging technology and factory automation (ETFA). IEEE, Barcelona, Spain, pp 1–4

    Google Scholar 

  70. Faroni M, Beschi M, Pedrocchi N (2019) An MPC framework for online motion planning in human-robot collaborative tasks. In: 2019 24th IEEE international conference on emerging technologies and factory automation (ETFA). IEEE, Zaragoza, Spain, pp 1555–1558

    Google Scholar 

  71. Aghazadeh S, Hafeznezami S, Najjar L, Huq Z (2011) The influence of work-cells and facility layout on the manufacturing efficiency. J Facil Manag 9:213–224. https://doi.org/10.1108/14725961111148117

    Article  Google Scholar 

  72. Michalos G, Makris S, Rentzos L, Chryssolouris G (2010) Dynamic job rotation for workload balancing in human based assembly systems. CIRP J Manuf Sci Technol 2:153–160. https://doi.org/10.1016/j.cirpj.2010.03.009

    Article  Google Scholar 

  73. Takata S, Hirano T (2011) Human and robot allocation method for hybrid assembly systems. CIRP Ann 60:9–12. https://doi.org/10.1016/j.cirp.2011.03.128

    Article  Google Scholar 

  74. Yu T, Huang J, Chang Q (2020) Mastering the working sequence in human-robot collaborative assembly based on reinforcement learning. ArXiv200704140 Cs Eess

    Google Scholar 

  75. URL CORDIS THOMAS EU project. https://cordis.europa.eu/project/id/723616. Accessed 31 Aug 2020

  76. Dianatfar M, Latokartano J, Lanz M (2019) Task balancing between human and robot in mid-heavy assembly tasks. Proced CIRP 81:157–161. https://doi.org/10.1016/j.procir.2019.03.028

    Article  Google Scholar 

  77. Müller R, Vette M, Mailahn O (2016) Process-oriented task assignment for assembly processes with human-robot interaction. Proced CIRP 44:210–215. https://doi.org/10.1016/j.procir.2016.02.080

    Article  Google Scholar 

  78. URL Siemenes process simulate. https://www.plm.automation.siemens.com/en_gb/Images/7457_tcm642-80351.pdf. Accessed 9 Jul 2020

  79. URL visual components. https://www.visualcomponents.com/. Accessed 9 Jul 2020

  80. Wang XV, Kemény Z, Váncza J, Wang L (2017) Human–robot collaborative assembly in cyber-physical production: classification framework and implementation. CIRP Ann 66:5–8. https://doi.org/10.1016/j.cirp.2017.04.101

    Article  Google Scholar 

  81. Bilberg A, Malik AA (2019) Digital twin driven human–robot collaborative assembly. CIRP Ann 68:499–502. https://doi.org/10.1016/j.cirp.2019.04.011

    Article  Google Scholar 

  82. Pairet E, Ardon P, Liu X, Lopes J, Hastie H, Lohan KS (2019) A digital twin for human-robot interaction. In: 2019 14th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, Daegu, Korea (South), pp 372–372

    Google Scholar 

  83. Negri E, Ardakani HD, Cattaneo L, Singh J, Macchi M, Lee J (2019) A digital twin-based scheduling framework including equipment health index and genetic algorithms. IFAC-Pap 52:43–48. https://doi.org/10.1016/j.ifacol.2019.10.024

    Article  Google Scholar 

  84. Metta G, Natale L, Nori F, Sandini G, Vernon D, Fadiga L, von Hofsten C, Rosander K, Lopes M, Santos-Victor J, Bernardino A, Montesano L (2010) The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw 23:1125–1134. https://doi.org/10.1016/j.neunet.2010.08.010

    Article  Google Scholar 

  85. Diankov R, Kuffner J (2008) OpenRAVE: a planning architecture for autonomous robotics

    Google Scholar 

  86. (2020) URL OpenHRP3. http://fkanehiro.github.io/openhrp3-doc/en/about.html

  87. Mois G, Folea S, Sanislav T (2017) Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans Instrum Meas 66:2056–2064. https://doi.org/10.1109/TIM.2017.2677619

    Article  Google Scholar 

  88. Usman S, Mehmood R, Katib I (2018) big data and hpc convergence: the cutting edge and outlook. In: Mehmood R, Bhaduri B, Katib I, Chlamtac I (eds) Smart societies, infrastructure, technologies and applications. Springer International Publishing, Cham, pp 11–26

    Chapter  Google Scholar 

  89. Qi Q, Tao F (2018) Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 6:3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265

    Article  Google Scholar 

  90. Kootbally Z (2016) Industrial robot capability models for agile manufacturing. Ind Robot Int J 43:481–494. https://doi.org/10.1108/IR-02-2016-0071

    Article  Google Scholar 

  91. Pedersen MR, Nalpantidis L, Andersen RS, Schou C, Bøgh S, Krüger V, Madsen O (2016) Robot skills for manufacturing: from concept to industrial deployment. Robot Comput-Integr Manuf 37:282–291. https://doi.org/10.1016/j.rcim.2015.04.002

    Article  Google Scholar 

  92. Zacharias F, Borst C, Hirzinger G (2007) Capturing robot workspace structure: representing robot capabilities. In: 2007 IEEE/RSJ international conference on intelligent robots and systems. IEEE, San Diego, CA, USA, pp 3229–3236

    Google Scholar 

  93. Robot operating system (ROS). http://www.ros.org/

  94. Muñoz Arancón M, Montano G, Wirkus M, Hoeflinger K, Silveria D, Tsiogkas N, Hugues J, Bruyninckx H, Bensalem S, Alanen J (June 20–22) ESROCOS: a robotic operating system for space and terrestrial applicationS. Netherlands

    Google Scholar 

  95. Setyanto NW, Efranto RY, Lukodono RP, Dirawidya A (2015) Ergonomics analysis in the scarfing process by OWAS, NIOSH and nordic body map’s method at slab steel plant’s division. IJIRSET 4:

    Google Scholar 

  96. URL Ergonomics eTool (2020). https://www.osha.gov/SLTC/etools/electricalcontractors/materials/heavy.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris Makris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kousi, N., Dimosthenopoulos, D., Aivaliotis, S., Michalos, G., Makris, S. (2022). Task Allocation: Contemporary Methods for Assigning Human–Robot Roles. In: Aldinhas Ferreira, M.I., Fletcher, S.R. (eds) The 21st Century Industrial Robot: When Tools Become Collaborators. Intelligent Systems, Control and Automation: Science and Engineering, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-030-78513-0_12

Download citation

Publish with us

Policies and ethics