Skip to main content

From Beneficial Bacteria to Microbial Derived Elicitors: Biotecnological Applications to Improve Fruit Quality

  • Chapter
  • First Online:
Plant Growth and Stress Physiology

Abstract

Food security is the global goal set by the UN in which enough and high-quality food should be available for any person at all times to live a healthy life. Increasing productivity has gone through several milestones in terms of selecting varieties, mineral plant nutrition or transgenic plants. However, additional efforts need to be made to further increase productivity, especially in low-quality soils. Among the new actions to take is to turn the plant into an active player in production, not a passive element that just absorbs nutrients. At that point, the microorganisms that inhabit plant roots become relevant actors since plants select those that best meet their needs in a given environment by releasing different molecules through the root, selecting efficient collaborators. Therefore, isolated strains become active materials to improve plant nutrition and/or trigger plant metabolism to develop biofertilizers and/or biostimulants for agriculture.

The application of active strains to different crops has proved to be effective to increase yield. However, the systemic changes induced in plant metabolism affect many processes, at the metabolic and gene expression level, affecting secondary metabolism pathways. Expression of core and regulatory genes is activated, resulting in modification of secondary metabolites profiles. When these secondary metabolites target human receptors, they are termed bioactives; hence, fruits from plants that have been stimulated contain more bioactives and hold a higher potential benefit for health. Isolation of bacterial determinants (elicitors) from effective strains able to target specific genes of interest in plants is a challenging approach to improve fruit quality, and at the same time, trigger plant defense reducing the need for chemical inputs during production. A case study blackberry illustrates bacterial strain and elicitors effects on fruit quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Algar E, Gutierrez-Mañero FJ, Bonilla A, Lucas JA, Radzki W, Ramos-Solano B (2012) Pseudomonas fluorescens N21. 4 metabolites enhance secondary metabolism isoflavones in soybean (Glycine max) calli cultures. J Agric Food Chem 60(44):11080–11087

    Article  CAS  PubMed  Google Scholar 

  • Algar E, Gutierrez-Manero FJ, Garcia-Villaraco A, Garcia-Seco D, Lucas JA, Ramos-Solano B (2014) The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol Biochem 82:9–16

    Article  CAS  PubMed  Google Scholar 

  • Alhoraibi H, Bigeard J, Rayapuram N, Colcombet J, Hirt H (2019) Plant immunity: the MTI-ETI model and beyond. Curr Issues Mol Biol:39–58

    Google Scholar 

  • Barriuso J, Solano BR, Manero FJG (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp on Arabidopsis thaliana. Phytopathology 98(6):666–672

    Article  CAS  PubMed  Google Scholar 

  • Biała W, Jasi’nski M (2018) The Phenylpropanoid case – it is transport that matters. Front Plant Sci 9:1610

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonilla A, Sarria ALF, Algar E, Muñoz Ledesma FJ, Ramos Solano B, Fernandes JB, Gutierrez Mañero FJ (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133e140

    Article  CAS  Google Scholar 

  • Capanoglu E (2010) The potential of priming in food production. Trends Food Sci Technol 21(8):399–407

    Article  CAS  Google Scholar 

  • Domenech J, Ramos B, Probanza A, Lucas JA, Gutierrez-Mañero FJ (2007) Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil 290(1–2):43–50

    Article  CAS  Google Scholar 

  • Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO et al (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    Article  CAS  PubMed  Google Scholar 

  • Galicia-Campos E, Ramos-Solano B, Montero-Palmero MB, Gutierrez-Mañero FJ, García-Villaraco A (2020) Management of plant physiology with beneficial bacteria to improve leaf bioactive profiles and plant adaptation under saline stress in Olea europea L. Foods 9:57

    Article  CAS  PubMed Central  Google Scholar 

  • García-Cristobal J, García-Villaraco A, Ramos B, Gutierrez-Manero FJ, Lucas JA (2015) Priming of pathogenesis related-proteins and enzymes related tooxidative stress by plant growth promoting rhizobacteria on riceplants upon abiotic and biotic stress challenge. J Plant Physiol 188:72–79

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One 10(11):e0142639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gust AA, Pruitt R, Nürnberger T (2017) Sensing danger: key to activating plant immunity. Trends Plant Sci:1–13

    Google Scholar 

  • Gutierrez E, García-Villaraco A, Lucas JA, Gradillas A, Gutierrez-Mañero FJ, Ramos-Solano B (2017) Transcriptomics, targeted metabolomics and gene expression of blackberry leaves and fruits indicate flavonoid metabolic flux from leaf to red fruit. Front Plant Sci 8:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez E, Kirakosyan A, Bolling SF, García-Villaraco A, Gutierrez-Mañero FJ, Ramos-Solano B (2018) Biotic elicitation as a tool to improve berry (strawberry and raspberry) extract potential on metabolic syndrome related enzymes in vitro. J Sci Food Agric. https://doi.org/10.1002/jsfa.9507

  • Gutierrez-Albanchez E, García-Villaraco A, Lucas JA, Gutierrez FJ, Ramos-Solano B (2018) Priming fingerprint induced by Bacillus amyloliquefaciens QV15, a common pattern in Arabidopsis thaliana and in field-grown blackberry. J. Plant Interact 13(1):398–408

    Article  CAS  Google Scholar 

  • Gutierrez-Albanchez E, Gradillas A, Garcia A, García-Villaraco A, Gutierrez-Mañero FJ, Ramos-Solano B (2020) Elicitation with Bacillus QV15 reveals a pivotal role of F3H on flavonoid metabolism improving adaptation to biotic stress in blackberry. https://doi.org/10.1371/journal.pone.0232626

  • Gutierrez Mañero FJ, Acero N, Lucas JA, Probanza A (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa L. Gaertn) growth. II. Characterization and biological assay of metabolites produced by growth promoting and growth inhibiting bacterial strains. Plant Soil 182:67–74

    Google Scholar 

  • Gutiérrez Mañero FJ, Algar E, Martín Gómez MS, Saco Sierra MD, Ramos-Solano B (2012) Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharm Biol 50(10):1201–1209

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry G, Thonart P, Ongena M (2012) PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnol Agron Soc Environ 16(2):257–268

    Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting Rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurikova T, Mlcek J, Skrovankova S, Balla S, Sochor J, Baron M, Sumczynski D (2016) Black crowberry (Empetrum nigrum L.) flavonoids and their health promoting activity. Molecules 21(12):1685

    Article  PubMed Central  CAS  Google Scholar 

  • Kaume L, Howard LR, Devareddy L (2012) The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem 60(23):5716–5727

    Article  CAS  PubMed  Google Scholar 

  • Klimis-Zacas D, Vendrame S, Kristo AS (2016) Wild blueberries attenuate risk factors of the metabolic syndrome. J Berry Res 6(2):225–236

    Article  CAS  Google Scholar 

  • Kirakosyan A, Gutierrez E, Ramos Solano B, Mitchell Seymour E, Bolling SF (2018) The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chem 252:142–146

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1981) Enhaced plant-growth by siderophores produced by plant growth-promoting rhizobacteria. Phytopathology 71(2):231–231

    Google Scholar 

  • Lindgren E, Harris F, Dangour AD, Gasparatos A, Hiramatsu M, Javadi F, Loken B, Murakami T, Scheelbeek P, Haines A (2018) Sustainable food systems—a health perspective. Sustain Sci 13:1505–1517

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhu L, Fukuda K, Ouyang S, Chen X, Wang C, Zhang CJ, Martin B, Gu C, Qin L, Rachakonda S, Aronica M, Qin J, Li X (2017) The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci Signal 10:467

    Article  Google Scholar 

  • Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Manero FJ, Lucas JA (2019) Extracts from cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic Pseudomonas syringae. AoB Plants 11(5):plz049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Manero FJ, Lucas JA (2020) Improving flavonoid metabolism in blackberry leaves and plant fitness by using the bioeffector Pseudomonas fluorescens N 21.4 and its metabolic elicitors: a biotechnological approach for a more sustainable crop. J Agric Food Chem 68(22):6170–6180

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21(10):818–822

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. In: S. S. Merchant, editor. Ann Rev Plant Biol 68:485–512

    Article  CAS  Google Scholar 

  • Miller RNG, Costa Alves GS, Van Sluys MA (2017) Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann Bot 119(5):681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimhan K, Basheer C, Bajic V, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning Y, Liu W, Wanga GL (2017) Balancing immunity and yield in crop plants. Trends Plant Sci 22(12):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Oh MM, Trick HN, Rajashekara CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166(2):180–191

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10(9):1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8(8):1225–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker P (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pongsilp N, Nimnoi P, Lumyong S (2016) Community structures of total bacterial DNA, cultivable bacteria and prototrophs in bulk soil and rhizospheres. Malaysian J Microbiol 12(1):1–14

    CAS  Google Scholar 

  • Qi J, Wang J, Gong Z, Zhou JM (2017) Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol 38:92–100

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34(2016):1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Ramos Solano B, Pereyra de la Iglesia MT, Probanza A, Lucas Garcıa JA, Megıas M, Gutierrez Mañero FJ (2006) Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant Soil 287:59–68

    Article  CAS  Google Scholar 

  • Ramos Solano B, Barriuso J, Gutiérrez Mañero FJ (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth, pp 41–54. https://doi.org/10.1002/9783527621989.ch3

    Chapter  Google Scholar 

  • Ramos-Solano B, Garcia-Villaraco A, Gutierrez-Manero FJ, Lucas JA, Bonilla A, Garcia-Seco D (2014) Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiol Biochem 74:1–8

    Article  CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • van Loon LC, Bakker P, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vranova E (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Vos IA, Moritz L, Pieterse CMJ, Van Wees SCM (2015) Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front Plant Sci 6:13

    Article  Google Scholar 

  • Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PRJ, Hein I (2014) Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front Plant Sci 5:655

    Article  PubMed  PubMed Central  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Mahmood K, Rothstein SJ (2017) ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol 0(0):1–14

    Google Scholar 

  • Zahir AZ, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China, 1st ed. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was received from Ministry of Economy and competitiveness for EGA grant BES2014-0769990, and AGL2013-45189-R. The authors would like to thank Agricola El Bosque for providing blackberry experimental fields, and Biotechnology students (CE, PN, MD) from University San Pablo CEU for helping with analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Ramos-Solano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramos-Solano, B., Garcia-Villaraco Velasco, A., Gutiérrez-Albanchez, E., Lucas, J.A., Gutierrez-Mañero, J. (2021). From Beneficial Bacteria to Microbial Derived Elicitors: Biotecnological Applications to Improve Fruit Quality. In: Gupta, D.K., Palma, J.M. (eds) Plant Growth and Stress Physiology. Plant in Challenging Environments, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-78420-1_4

Download citation

Publish with us

Policies and ethics