Skip to main content

On Double Coset Decompositions of Real Reductive Groups for Reductive Absolutely Spherical Subgroups

  • Conference paper
  • First Online:
Geometric and Harmonic Analysis on Homogeneous Spaces and Applications (TJC 2019)

Abstract

The aim of this article is to show an induction argument to obtain the double coset decomposition \(H\backslash G/L\) of a real reductive Lie group G with respect to reductive absolutely spherical subgroups H and L. As an application, we describe generic double cosets with some exceptions. The exceptions for our approach come from some factorizations of type \({\text {D}}_{4}\)-groups.

This work was supported by a JSPS Kakenhi (70780063).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Akhiezer, On Lie algebra decompositions, related to spherical homogeneous spaces. Manuscripta Math. 80(1), 81–88 (1993)

    Article  MathSciNet  Google Scholar 

  2. A. Anisimov, Spherical subgroups and double coset varieties. J. Lie Theory 22(2), 505–522 (2012)

    MathSciNet  MATH  Google Scholar 

  3. M. Brion, Classification des espaces homogenes spheriques. Compositio Math. 63(2), 189–208 (1987)

    MathSciNet  MATH  Google Scholar 

  4. J. Dadok, Polar coordinates induced by actions of compact Lie groups. Trans. Amer. Math. Soc. 288(1), 125–137 (1985)

    Article  MathSciNet  Google Scholar 

  5. T. Danielsen, B. Krötz, H. Schlichtkrull, Decomposition theorems for triple spaces. Geom. Dedicata 174, 145–154 (2015)

    Article  MathSciNet  Google Scholar 

  6. M. Flensted-Jensen, Spherical functions of a real semisimple Lie group. A method of reduction to the complex case. J. Funct. Anal. 30(1), 106–146 (1978)

    Google Scholar 

  7. E. Heintze, R. Palais, C. Terng, G. Thorbergsson, Hyperpolar actions on symmetric spaces. Geometry, Topology, & Physics, pp. 214–245, Conference Proceedings of the Lecture Notes Geometry Topology, IV, International Press, Cambridge, MA (1995)

    Google Scholar 

  8. A.G. Helminck, G.W. Schwarz, Orbits and invariants associated with a pair of commuting involutions. Duke Math. J. 106(2), 237–279 (2001)

    Article  MathSciNet  Google Scholar 

  9. A.G. Helminck, G.W. Schwarz, Orbits and invariants associated with a pair of spherical varieties: some examples. The 2000 Twente Conference on Lie Groups (Enschede). Acta Appl. Math. 73(1–2), 103–113 (2002)

    Google Scholar 

  10. A.G. Helminck, G.W. Schwarz, Real double coset spaces and their invariants. J. Algebra 322(1), 219–236 (2009)

    Article  MathSciNet  Google Scholar 

  11. B. Hoogenboom, Intertwining functions on compact Lie groups. CWI Tract, 5, Math. Centrum, Centrum Wisk. Inform., Amsterdam (1984)

    Google Scholar 

  12. F. Knop, B. Krötz, E. Sayag, H. Schlichtkrull, Simple compactifications and polar decomposition of homogeneous real spherical spaces. Selecta Math. 21(3), 1071–1097 (2015)

    Article  MathSciNet  Google Scholar 

  13. F. Knop, B. Krötz, T. Pecher, H. Schlichtkrull, Classification of reductive real spherical pairs I: the simple case. Transform. Groups 24(1), 67–114 (2019)

    Article  MathSciNet  Google Scholar 

  14. F. Knop, B. Krötz, T. Pecher, H. Schlichtkrull, Classification of reductive real spherical pairs II: the semisimple case. Transform. Groups 24(2), 467–510 (2019)

    Article  MathSciNet  Google Scholar 

  15. T. Kobayashi, Introduction to harmonic analysis on real spherical homogeneous spaces. Proceedings of the 3rd Summer School on Number Theory Homogeneous Spaces and Automorphic Forms in Nagano (F. Sato, ed.), 1995, 22–41 (in Japanese)

    Google Scholar 

  16. T. Kobayashi, A generalized Cartan decomposition for the double coset space \((U(n_{1})\times U(n_{2})\times U(n_{3})) \backslash U(n)/ (U(p)\times U(q))\). J. Math. Soc. Jpn. 59(3), 669–691 (2007)

    Article  Google Scholar 

  17. M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math. 38, 129–153 (1979)

    MathSciNet  MATH  Google Scholar 

  18. M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Sci. École Norm. Sup. (4) 11(2), 167–210 (1978)

    Google Scholar 

  19. T. Matsuki, Double coset decompositions of algebraic groups arising from two involutions. II (Japanese), Noncommutative analysis on homogeneous spaces (Kyoto, , S\(\bar{{\rm u}}\)rikaisekikenky\(\bar{{\rm u}}\)sho K\(\bar{{\rm o}}\)ky\(\bar{{\rm u}}\)roku. No. 895(1995), 98–113 (1994)

    Google Scholar 

  20. T. Matsuki, Double coset decompositions of algebraic groups arising from two involutions. I. J. Algebra 175(3), 865–925 (1995)

    Article  MathSciNet  Google Scholar 

  21. T. Matsuki, Double coset decompositions of reductive Lie groups arising from two involutions. J. Algebra 197(1), 49–91 (1997)

    Article  MathSciNet  Google Scholar 

  22. C. Miebach, Matsuki’s double coset decomposition via gradient maps. J. Lie Theory 18, 555–580 (2008)

    MathSciNet  MATH  Google Scholar 

  23. I. V. Mikityuk, Integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Mat. Sb. (N.S.) 129(171) (4), 514–534, 591 (1986)

    Google Scholar 

  24. G.D. Mostow, Some new decomposition theorems for semi-simple groups. Mem. Amer. Math. Soc. No. 14, 31–54 (1955)

    MathSciNet  MATH  Google Scholar 

  25. A.L. Onishchik, Decompositions of reductive Lie groups. Mat. Sb. (N.S.) 80(122), 553–599 (1969)

    Google Scholar 

  26. T. Oshima, T. Matsuki, Orbits on affine symmetric spaces under the action of the isotropy subgroups. J. Math. Soc. Jpn. 32(2), 399–414 (1980)

    Article  MathSciNet  Google Scholar 

  27. R.W. Richardson, Orbits, invariants and representations associated to involutions of reductive groups. Invent. Math. 66, 287–312 (1982)

    Article  MathSciNet  Google Scholar 

  28. W. Rossmann, The structure of semisimple symmetric spaces. Canad. J. Math. 31(1), 157–180 (1979)

    Article  MathSciNet  Google Scholar 

  29. A. Sasaki, A characterization of non-tube type Hermitian symmetric spaces by visible actions. Geom. Dedicata 145, 151–158 (2010)

    Article  MathSciNet  Google Scholar 

  30. A. Sasaki, Admissible representations, multiplicity-free representations and visible actions on non-tube type Hermitian symmetric spaces Proc. Jpn. Acad. Ser. A Math. Sci. 91(5), 70–75 (2015)

    MATH  Google Scholar 

  31. Y. Tanaka, A Cartan decomposition for a reductive real spherical homogeneous space, to appear in Kyoto Journal of Mathematics

    Google Scholar 

  32. I. Yokota, Exceptional Lie groups. arXiv:0902.0431 [math.DG]

Download references

Acknowledgements

The author would like to express his sincere gratitude to Professor Toshiyuki Kobayashi for his generous support and constant encouragement. He is also grateful to an anonymous referee for comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanaka, Y. (2021). On Double Coset Decompositions of Real Reductive Groups for Reductive Absolutely Spherical Subgroups. In: Baklouti, A., Ishi, H. (eds) Geometric and Harmonic Analysis on Homogeneous Spaces and Applications . TJC 2019. Springer Proceedings in Mathematics & Statistics, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-78346-4_14

Download citation

Publish with us

Policies and ethics