Skip to main content

Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Training

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12729))

Included in the following conference series:

Abstract

Data augmentation has proved extremely useful by increasing training data variance to alleviate overfitting and improve deep neural networks’ generalization performance. In medical image analysis, a well-designed augmentation policy usually requires much expert knowledge and is difficult to generalize to multiple tasks due to the vast discrepancies among pixel intensities, image appearances, and object shapes in different medical tasks. To automate medical data augmentation, we propose a regularized adversarial training framework via two min-max objectives and three differentiable augmentation models covering affine transformation, deformation, and appearance changes. Our method is more automatic and efficient than previous automatic augmentation methods, which still rely on pre-defined operations with human-specified ranges and costly bi-level optimization. Extensive experiments demonstrated that our approach, with less training overhead, achieves superior performance over state-of-the-art auto-augmentation methods on both tasks of 2D skin cancer classification and 3D organs-at-risk segmentation.

This research was supported in part by NSF: IIS 1703883, NSF IUCRC CNS-1747778 and funding from SenseBrain, CCF-1733843, IIS-1763523, IIS-1849238, MURI- Z8424104 -440149 and NIH: 1R01HL127661-01 and R01HL127661-05. and in part by Centre for Perceptual and Interactive Intelligence (CPII) Limited, Hong Kong SAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Project page: https://github.com/yhygao/Efficient_Data_Augmentation.

  2. 2.

    https://github.com/MIC-DKFZ/batchgenerators.

References

  1. Alaifari, R., Alberti, G.S., Gauksson, T.: ADef: an iterative algorithm to construct adversarial deformations. arXiv preprint arXiv:1804.07729 (2018)

  2. Brinker, T.J., et al.: Skin cancer classification using convolutional neural networks: systematic review. J. Med. Internet Res. 20, e11936 (2018)

    Article  Google Scholar 

  3. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  4. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on CVPR Workshops, pp. 702–703 (2020)

    Google Scholar 

  7. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: ICML, pp. 1802–1811 (2019)

    Google Scholar 

  8. Gao, Y., et al.: FocusNet: imbalanced large and small organ segmentation with an end-to-end deep neural network for head and neck CT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 829–838. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_92

    Chapter  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems pp. 2672–2680 (2014)

    Google Scholar 

  10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  11. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. In: Advances in NIPS, pp. 125–136 (2019)

    Google Scholar 

  12. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv:1809.10486 (2018)

  13. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast AutoAugment. In: Advances in Neural Information Processing Systems, pp. 6665–6675 (2019)

    Google Scholar 

  17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  18. Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. arXiv preprint arXiv:1804.00504 (2018)

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

  20. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  21. Tramèr, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: Advances in NIPS, pp. 5866–5876 (2019)

    Google Scholar 

  22. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152 (2018)

  23. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610 (2018)

  24. Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A.L., Le, Q.V.: Adversarial examples improve image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 819–828 (2020)

    Google Scholar 

  25. Xu, J., Li, M., Zhu, Z.: Automatic data augmentation for 3D medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 378–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_37

    Chapter  Google Scholar 

  26. Yang, D., Roth, H., Xu, Z., Milletari, F., Zhang, L., Xu, D.: Searching learning strategy with reinforcement learning for 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_1

    Chapter  Google Scholar 

  27. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on CVPR, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Tang or Dimitris Metaxas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Tang, Z., Zhou, M., Metaxas, D. (2021). Enabling Data Diversity: Efficient Automatic Augmentation via Regularized Adversarial Training. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics