Skip to main content

Stem Cell-Based Products in the Market

  • Chapter
  • First Online:
Advances in Application of Stem Cells: From Bench to Clinics

Abstract

There has been considerable attention paid to cutaneous stem cell in the area of regenerative medicine as a potential therapeutic goal for managing disorders of the skin and hair, possible use in quickening or supporting the process of wound healing, and numerous types of cancers related to the skin. Cutaneous stem cell plays an essential role in many processes as skin structures’ renovation in case of injuries. During hemostasis, the growth of hair follicles and melanocytes is reconstructed and produced. So, obtaining applicable and valid access to skin stem cells for cutaneous interventions, which often include active molecules, is a treasured accomplishment. However, the main hindrance for drug delivery through the topical route is the active barrier represented by the skin against most exogenous molecules’ penetration. Thus, this field's research is paying more attention to new strategies to avoid and by-pass this barrier efficiently. In this section, a summary of recent advancements made in stem cell and an investigation of their benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasalizadeh, S. & Baharvand, H. J. B. A. (2013). Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. 31, 1600–1623.

    Google Scholar 

  • Ahn, J. O., Lee, H. W., Seo, K. W., Kang, S. K., Ra, J. C. & Youn, H. Y. (2013). Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma. PloS ONE, 8, e74897.

    Google Scholar 

  • Aljabali, A. A., Obeid, M. A., Amawi, H. A., Rezigue, M. M., Hamzat, Y., Satija, S. & Tambuwala, M. M. (2020). Application of nanomaterials in the diagnosis and treatment of genetic disorders. In F. A. Khan (Ed.), Applications of nanomaterials in human health. Springer Singapore.

    Google Scholar 

  • Allison, M. (2012). Hemacord approval may foreshadow regulatory creep for HSC therapies. Nature Publishing Group.

    Google Scholar 

  • Aly, R. M. (2020) Current state of stem cell-based therapies: An overview. Stem cell investigation, 7

    Google Scholar 

  • Bajada, S., Mazakova, I., Richardson, J. B., Ashammakhi, N. J. J. O. T. E. & Medicine, R. (2008). Updates on stem cells and their applications in regenerative medicine. 2, 169–183.

    Google Scholar 

  • Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., Yasuzawa-Amano, S., Trofimova, I., Siggins, R. W. & Lecapitaine, N. J. P. O. T. N. A. O. S. (2007). Human cardiac stem cells. 104, 14068–14073.

    Google Scholar 

  • Bernareggi, D., Pouyanfard, S. & Kaufman, D. S. J. E. H. (2019). Development of innate immune cells from human pluripotent stem cells. 71, 13–23.

    Google Scholar 

  • Biehl, J. K. & Russell, B. J. T. J. O. C. N. (2009). Introduction to stem cell therapy. 24, 98.

    Google Scholar 

  • Bolli, R., Chugh, A. R., D'amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., Beache, G. M., Wagner, S. G., Leri, A. & Hosoda, T. J. T. L. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. 378, 1847–1857.

    Google Scholar 

  • Businessinsider. (2020). Growth in the global healthcare market presents opportunities [Online]. Available: https://markets.businessinsider.com/news/stocks/worldwide-stem-cell-therapy-industry-to-2027-growth-in-the-global-healthcare-market-presents-opportunities-1029322666. [Accessed June 03, 2020].

  • Chism, S. E., Burton, R. C., Warner, N. L. J. C. I. & Immunopathology. (1978). Immunogenicity of oncofetal antigens: A review. 11, 346–373.

    Google Scholar 

  • Chong, J. J., Yang, X., Don, C. W., Minami, E., LIU, Y.-W., Weyers, J. J., Mahoney, W. M., VAN Biber, B., Cook, S. M. & Palpant, N. J. J. N. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. 510, 273–277.

    Google Scholar 

  • Chugh, A. R., Beache, G. M., Loughran, J. H., Mewton, N., Elmore, J. B., Kajstura, J., Pappas, P., Tatooles, A., Stoddard, M. F. & Lima, J. A. J. C. (2012). Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. 126, S54–S64.

    Google Scholar 

  • https://www.clinicaltrialsregister.eu

  • Coleman, S. R. J. P. & Surgery, R. (2006). Structural fat grafting: More than a permanent filler. 118, 108S–120S.

    Google Scholar 

  • Cuende, N., Rasko, J. E., Koh, M. B., Dominici, M. & Ikonomou, L. J. C. (2018). Cell, tissue and gene products with marketing authorization in 2018 worldwide. 20, 1401–1413.

    Google Scholar 

  • Cyranoski, D. J. N. (2019). The potent effects of Japan's stem-cell policies. 573, 482.

    Google Scholar 

  • Darabi, R., Gehlbach, K., Bachoo, R. M., Kamath, S., Osawa, M., Kamm, K. E., Kyba, M. & Perlingeiro, R. C. J. N. M. (2008). Functional skeletal muscle regeneration from differentiating embryonic stem cells. 14, 134–143.

    Google Scholar 

  • de Almeida, P. E., Meyer, E. H., Kooreman, N. G., Diecke, S., Dey, D., Sanchez-Freire, V., Hu, S., Ebert, A., Odegaard, J., Mordwinkin, N. M., Brouwer, T. P., Lo, D., Montoro, D. T., Longaker, M. T., Negrin, R. S., & Wu, J. C. (2014). Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nature Communications, 5, 3903.

    Article  Google Scholar 

  • Discher, D. J. A. (2010). Matrix elasticity directs stem cell lineage specification. 2010, Q7. 003.

    Google Scholar 

  • Du, J., Zhou, L., Chen, X., Yan, S., Ke, M., Lu, X., Wang, Z., Yu, W., & Xiang, A. P. (2012). IFN-γ-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. The International Journal of Biochemistry & Cell Biology, 44, 1305–1314.

    Article  CAS  Google Scholar 

  • Eleuteri, S. & Fierabracci, A. J. I. J. O. M. S. (2019). Insights into the secretome of mesenchymal stem cells and its potential applications. 20, 4597.

    Google Scholar 

  • Ellison, G. M., Vicinanza, C., Smith, A. J., Aquila, I., Leone, A., Waring, C. D., Henning, B. J., Stirparo, G. G., Papait, R. & Scarfò, M. J. C. (2013). Adult c-kitpos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. 154, 827–842.

    Google Scholar 

  • Essop, Z. M., Al-Sabah, A., Francis, W. R. & Whitaker, I. S. J. B. M. (2016). Transforming healthcare through regenerative medicine. 14, 115.

    Google Scholar 

  • Fishman, W. H., Raam, S., & Stolbach, L. L. (1975). Markers for ovarian cancer: Regan isoenzyme and other glycoproteins. Seminars in Oncology, 2, 211–216.

    CAS  PubMed  Google Scholar 

  • Foley, L. & Whitaker, M. J. S. C. T. M. (2012). Concise review: Cell therapies: the route to widespread adoption. 1, 438–447.

    Google Scholar 

  • Fukushima, S., Coppen, S. R., Lee, J., Yamahara, K., Felkin, L. E., Terracciano, C. M., Barton, P. J., Yacoub, M. H. & Suzuki, K. J. P. O. (2008). Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. 3, e3071.

    Google Scholar 

  • Gao, P., Ding, Q., Wu, Z., Jiang, H., & Fang, Z. (2010). Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Letters, 290, 157–166.

    Article  CAS  Google Scholar 

  • Gao, F., Chiu, S., Motan, D., Zhang, Z., Chen, L., JI, H., Tse, H., Fu, Q. -L ., Lian, Q. J. C. D. & Disease. (2016). Mesenchymal stem cells and immunomodulation: current status and future prospects. 7, e2062–e2062.

    Google Scholar 

  • Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., Cañizo, C., Martin-Arnau, A., Martí-Climent, J. M., Hernández, M. J. T. J. O. T. & Surgery, C. (2006a). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. 131, 799–804.

    Google Scholar 

  • Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., García-Rodríguez, A., Orbe, J., Páramo, J. A., Belzunce, M., Rábago, G., Barba, J. & Herreros, J. J. C. R. (2006b). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. 71, 744–753.

    Google Scholar 

  • Gavira, J. J., Nasarre, E., Abizanda, G., Perez-ilzarbe, M., DE Martino-Rodriguez, A., García De Jalón, J. A., Mazo, M., Macias, A., García-Bolao, I. & Pelacho, B. J. E. H. J. (2010). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. 31, 1013–1021.

    Google Scholar 

  • Gee, P., Lung, M. S., Okuzaki, Y., Sasakawa, N., Iguchi, T., Makita, Y., Hozumi, H., Miura, Y., Yang, L. F. & Iwasaki, M. J. N. C. (2020). Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. 11, 1–18.

    Google Scholar 

  • Ghieh, F., Jurjus, R., Ibrahim, A., Geagea, A. G., Daouk, H., EL Baba, B., Chams, S., Matar, M., Zein, W. & Jurjus, A. J. B. R. I. (2015). The use of stem cells in burn wound healing: A review.

    Google Scholar 

  • Ghosh, Z., Huang, M., Hu, S., Wilson, K. D., Dey, D., & Wu, J. C. (2011). Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Research, 71, 5030–5039.

    Article  CAS  Google Scholar 

  • Gibbons, G. W. J. A. I. W. C. (2015). Grafix®, a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. 4, 534–544.

    Google Scholar 

  • Giwa, S., Lewis, J. K., Alvarez, L., Langer, R., Roth, A. E., Church, G. M., Markmann, J. F., Sachs, D. H., Chandraker, A. & Wertheim, J. A. J. N. B. (2017). The promise of organ and tissue preservation to transform medicine. 35, 530–542.

    Google Scholar 

  • Ha, A., Criman, E. T., Kurata, W. E., Matsumoto, K. W., Pierce, L. M. J. P. & Open, R. S. G. (2017). Evaluation of a novel hybrid viable bioprosthetic mesh in a model of mesh infection. 5.

    Google Scholar 

  • Hagège, A. A., Marolleau, J. -P., Vilquin, J. -T., Alhéritière, A., Peyrard, S. V., Duboc, D., Abergel, E., Messas, E., Mousseaux, E. & Schwartz, K. J. C. (2006). Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. 114, I-108–I-113.

    Google Scholar 

  • Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., Demaria, A. N., Denktas, A. E., & Gammon, R. S. (2009a). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    Article  CAS  Google Scholar 

  • Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., Demaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, J. B., Reisman, M. A., Schaer, G. L., & Sherman, W. (2009b). A Randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    Article  CAS  Google Scholar 

  • Hare, J. M., Fishman, J. E., Gerstenblith, G., Difede Velazquez, D. L., Zambrano, J. P., Suncion, V. Y., Tracy, M., Ghersin, E., Johnston, P. V., Brinker, J. A., Breton, E., Davis-Sproul, J., Byrnes, J., George, R., Lardo, A., Schulman, I. H., Mendizabal, A. M., Lowery, M. H., Rouy, D., Altman, P., Wong Po Foo, C., Ruiz, P., Amador, A., Da Silva, J., Mcniece, I. K. & Heldman, A. W. (2012). Comparison of allogeneic versus autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA, 308, 2369–2379.

    Google Scholar 

  • Hata, H., Matsumiya, G., Miyagawa, S., Kondoh, H., Kawaguchi, N., Matsuura, N., Shimizu, T., Okano, T., Matsuda, H., Sawa, Y. J. T. J. O. T. & Surgery, C. (2006). Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. 132, 918–924.

    Google Scholar 

  • Haynes, W. D., Shertock, K. L., Skinner, J. M., & Whitehead, R. (1985). The ultrastructural immunohistochemistry of oncofoetal antigens in large bowel carcinomas. Virchows Arch A Pathol Anat Histopathol, 405, 263–275.

    Article  CAS  Google Scholar 

  • Health, N. I. O. (2009). National Institutes of Health guidelines on human stem cell research.

    Google Scholar 

  • Hofmann, M. -C. (2014). Stem cells and nanomaterials. Nanomaterial. Springer.

    Google Scholar 

  • Ikeda, K., Ohto, H., Okuyama, Y., Yamada-Fujiwara, M., Kanamori, H., Fujiwara, S.-I., Muroi, K., Mori, T., Kasama, K. & Iseki, T. J. T. M. R. (2018). Adverse events associated with infusion of hematopoietic stem cell products: a prospective and multicenter surveillance study. 32, 186–194.

    Google Scholar 

  • Insights, C. M. (2020). Global stem cell therapy market [Online]. Available: https://www.coherentmarketinsights.com. [Accessed June 03, 2020].

  • Karantalis, V. & Hare, J. M. (2015). Use of Mesenchymal stem cells for therapy of cardiac disease. 116, 1413–1430.

    Google Scholar 

  • Kastrup, J., Haack‐Sørensen, M., Juhl, M., Harary Søndergaard, R., Follin, B., Drozd Lund, L., Mønsted Johansen, E., Ali Qayyum, A., Bruun Mathiasen, A. & Jørgensen, E. J. S. C. T. M. (2017). Cryopreserved off‐the‐shelf allogeneic adipose‐derived stromal cells for therapy in patients with ischemic heart disease and heart failure—A safety study. 6, 1963–1971.

    Google Scholar 

  • Kebriaei, P., Hayes, J., Daly, A., Uberti, J., Marks, D. I., Soiffer, R., Waller, E. K., Burke, E., Skerrett, D., Shpall, E. J. B. O. B. & Transplantation, M. (2020). A phase 3 randomized study of remestemcel-L versus placebo added to second-line therapy in patients with steroid-refractory acute graft-versus-host disease. 26, 835–844.

    Google Scholar 

  • Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-ELDOR, J. & Gepstein, L. J. N. B. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. 22, 1282–1289.

    Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Klüter, H. & Bieback, K. J. S. C. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. 24, 1294–1301.

    Google Scholar 

  • Kim, M., Kim, I., Kim, S. -H., Jung, M., Han, S., Lee, J., Nam, J.-S., LEE, S .-K. & Bang, S. J. C. (2007a). Cryopreserved human adipogenic-differentiated pre-adipocytes: a potential new source for adipose tissue regeneration. 9, 468–476.

    Google Scholar 

  • Kim, W. -S., Park, B. -S., Sung, J. -H., Yang, J. -M., Park, S. -B., Kwak, S. -J. & Park, J. -S. J. J. O. D. S. (2007b). Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. 48, 15–24.

    Google Scholar 

  • Kim, W. -S., Park, S. -H., Ahn, S. -J., Kim, H. -K., Park, J. -S., Lee, G. -Y., Kim, K. -J., Whang, K. -K., Kang, S. -H., Park, B. -S. J. B. & Bulletin, P. (2008). Whitening effect of adipose-derived stem cells: a critical role of TGF-β1. 31, 606–610.

    Google Scholar 

  • Kim, W. -S., Park, B. -S., Park, S. -H., Kim, H. -K. & Sung, J. -H. J. J. O. D. S. (2009). effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. 53, 96–102.

    Google Scholar 

  • Kimiskidis, V., Sakellari, I., Tsimourtou, V., Kapina, V., Papagiannopoulos, S., Kazis, D., Vlaikidis, N., Anagnostopoulos, A. & Fassas, A. J. M. S. J. (2008). Autologous stem-cell transplantation in malignant multiple sclerosis: A case with a favorable long-term outcome. 14, 278–283.

    Google Scholar 

  • King, N. M., Perrin, J. J. S. C. R. & Therapy. (2014). Ethical issues in stem cell research and therapy. 5, 85.

    Google Scholar 

  • Kwon, S. G., Kwon, Y. W., Lee, T. W., Park, G. T. & Kim, J. H. J. B. R. (2018). Recent advances in stem cell therapeutics and tissue engineering strategies. 22, 1–8.

    Google Scholar 

  • Laflamme, M. A., Gold, J., XU, C., Hassanipour, M., Rosler, E., Police, S., Muskheli, V. & Murry, C. E. J. T. A. J. O. P. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. 167, 663–671.

    Google Scholar 

  • Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., Reinecke, H., Xu, C., Hassanipour, M. & Police, S. J. N. B. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. 25, 1015–1024.

    Google Scholar 

  • Le, P. T.-B., Duong, T. M., Vu, N. B. & Van Pham, P. J. B. R. T. (2016). Umbilical cord derived stem cell (ModulatistTM) transplantation for severe chronic obstructive pulmonary disease: A report of two cases. 3, 902–909.

    Google Scholar 

  • Linero, I. & Chaparro, O. J. P. O. (2014). Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. 9, e107001.

    Google Scholar 

  • Locatelli, F., Algeri, M., Trevisan, V. & Bertaina, A. J. E. R. O. C. I. (2017). Remestemcel-L for the treatment of graft versus host disease. 13, 43–56.

    Google Scholar 

  • Madigan, M. & Atoui, R. J. B. (2018). Therapeutic use of stem cells for myocardial infarction. 5, 28.

    Google Scholar 

  • Mahla, R. S. J. I. J. O. C. B. (2016). Stem cells applications in regenerative medicine and disease therapeutics.

    Google Scholar 

  • Malliaras, K., Zhang, Y., Seinfeld, J., Galang, G., Tseliou, E., Cheng, K., Sun, B., Aminzadeh, M. & Marbán, E. J. E. M. M. (2013). Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. 5, 191–209.

    Google Scholar 

  • Malliaras, K., Makkar, R. R., Smith, R. R., Cheng, K., Wu, E., Bonow, R. O., Marbán, L., Mendizabal, A., Cingolani, E. & Johnston, P. V. J. J. O. T. A. C. O. C. (2014). Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). 63, 110–122.

    Google Scholar 

  • Mandrycky, C., Phong, K. & Zheng, Y. J. M. C. (2017). Tissue engineering toward organ-specific regeneration and disease modeling. 7, 332–347

    Google Scholar 

  • Marks, P. W., Witten, C. M. & Califf, R. M. J. N. E. J. M. (2017). Clarifying stem-cell therapy’s benefits and risks. 376, 1007–1009.

    Google Scholar 

  • Matzuk, M. M., Krieger, M., Corless, C. L., & Boime, I. (1987). Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells. Proceedings of the National Academy of Sciences of the United States of America, 84, 6354–6358.

    Article  CAS  Google Scholar 

  • Mehta, M., Dhanjal, D. S., Paudel, K. R., Singh, B., Gupta, G., Rajeshkumar, S., Thangavelu, L., Tambuwala, M. M., Bakshi, H. A. & Chellappan, D. K. J. I. (2020). Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. 1–23.

    Google Scholar 

  • Melugin, H. P., Ridley, T. J., Bernard, C. D., Wischmeier, D., Farr, J., Stuart, M. J., Macalena, J. A. & Krych, A. J. (2020). Prospective outcomes of cryopreserved osteochondral allograft for patellofemoral cartilage defects at minimum 2-year follow-up. Cartilage, 1947603520903420.

    Google Scholar 

  • Meng, Z. W., Baumgart, D. C. J. E. R. O. G. & Hepatology. (2020). Darvadstrocel for the treatment of perianal fistulas in Crohn’s disease.

    Google Scholar 

  • Miller, M. J., Plastic, P. S. E. F. D. C. J. & Surgery, R. (2003). Cryopreservation of adult stem cells derived from lipoaspirate. 111, 2466–2468.

    Google Scholar 

  • Mirzayan, R., Sherman, B. & Chahla, J. J. A. T. (2018). Cryopreserved, viable osteochondral allograft for the treatment of a full-thickness cartilage defect of the glenoid. 7, e1269–e1273.

    Google Scholar 

  • Mohty, M., Labopin, M., Velardi, A., Van Lint, M. T., Bunjes, D., Bruno, B., Santarone, S., Tischer, J., Koc, Y. & Wu, D. (2016). Allogeneic genetically modified T Cells (HSV-TK) as adjunctive treatment in haploidentical hematopoietic stem-cell transplantation (haplo-HSCT) of adult patients with high-risk hematological malignancies: a pair-matched analysis from the acute Leukemia working party of EBMT. American Society of Hematology.

    Google Scholar 

  • Moore, T. J., Morrow, R. L., Dormuth, C. R., & Mintzes, B. (2020). US food and drug administration safety advisories and reporting to the adverse event reporting system (FAERS). Pharmaceutical Medicine, 34, 135–140.

    Article  Google Scholar 

  • Nianias, A. & Themeli, M. J. C. H. M. R. (2019). Induced pluripotent stem cell (iPSC)–derived lymphocytes for adoptive cell immunotherapy: recent advances and challenges. 14, 261–268.

    Google Scholar 

  • . Oliveira, Jr., A. A. & Hodges, H. M. J. C. A. R. (2005). Alzheimer's disease and neural transplantation as prospective cell therapy. 2, 79–95.

    Google Scholar 

  • Oyama, T., Nagai, T., Wada, H., Naito, A. T., Matsuura, K., Iwanaga, K., Takahashi, T., Goto, M., Mikami, Y. & Yasuda, N. J. T. J. O. C. B. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. 176, 329–341.

    Google Scholar 

  • Panés, J., García-Olmo, D., Van Assche, G., Colombel, J. F., Reinisch, W., Baumgart, D. C., Dignass, A., Nachury, M., Ferrante, M. & Kazemi-Shirazi, L. J. G. (2018). Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. 154, 1334–1342. e4.

    Google Scholar 

  • Park, B. S., Jang, K. A., Sung, J. H., Park, J. S., Kwon, Y. H., Kim, K. J. & Kim, W. S. J. D. S. (2008). Adipose‐derived stem cells and their secretory factors as a promising therapy for skin aging. 34, 1323–1326.

    Google Scholar 

  • Patrikoski, M., Mannerström, B. & Miettinen, S. J. S. C. I. (2019). Perspectives for clinical translation of adipose stromal/stem cells.

    Google Scholar 

  • Pellegrini, G., Ardigò, D., Milazzo, G., Iotti, G., Guatelli, P., Pelosi, D. & De Luca, M. J. S. C. T. M. (2018). Navigating market authorization: the path holoclar took to become the first stem cell product approved in the European Union. 7, 146–154.

    Google Scholar 

  • Perruccio, K., Topini, F., Tosti, A., Carotti, A., Aloisi, T., Aversa, F., Martelli, M. F., Velardi, A. J. B. C., Molecules, & Diseases (2008). Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. 40, 76–83.

    Google Scholar 

  • Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M. & Caplan, A. I. J. N. R. M. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. 4, 1–15.

    Google Scholar 

  • Prasad, V. K., Lucas, K. G., Kleiner, G. I., Talano, J. A. M., Jacobsohn, D., Broadwater, G., Monroy, R., Kurtzberg, J. J. B. O. B. & Transplantation, M. (2011). Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal™) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. 17, 534–541.

    Google Scholar 

  • Purswani, S., & Talwar, G. P. (2011). Development of a highly immunogenic recombinant candidate vaccine against human chorionic gonadotropin. Vaccine, 29, 2341–2348.

    Article  CAS  Google Scholar 

  • Rad, F., Ghorbani, M., Roushandeh, A. M. & Roudkenar, M. H. J. M. B. R. (2019). Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. 46, 1533–1549.

    Google Scholar 

  • Robb, K. P., Fitzgerald, J. C., Barry, F. & Viswanathan, S. J. C. (2019). Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. 21, 289–306.

    Google Scholar 

  • Rose, L., Wolf, E., Brindle, T., Cernich, A., Dean, W., Dearth, C., Grimm, M., Kusiak, A., Nitkin, R. & Potter, K. J. N. R. M. (2018). The convergence of regenerative medicine and rehabilitation: federal perspectives. 3, 1–7.

    Google Scholar 

  • Rosenthal, N. & Badylak, S. J. N. R. M. (2016). Regenerative medicine: today’s discoveries informing the future of medical practice. 1, 1–3.

    Google Scholar 

  • Sanberg, P. R. J. P. O. T. N. A. O. S. (2007). Neural stem cells for Parkinson's disease: To protect and repair. 104, 11869–11870.

    Google Scholar 

  • Scott, L. J. (2018). Darvadstrocel: a review in treatment-refractory complex perianal fistulas in Crohn’s Disease. BioDrugs, 32, 627–634.

    Google Scholar 

  • Sheridan, C. (2018). First off-the-shelf mesenchymal stem cell therapy nears European approval. Nature Publishing Group.

    Google Scholar 

  • Sugarman, J. J. C. R. (2008). Ethical issues in stem cell research and treatment. 18, S176–S176.

    Google Scholar 

  • Syed, B. A. & Evans, J. B. (2013). Stem cell therapy market. Nature reviews. Drug discovery, 12(3), 185

    Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  Google Scholar 

  • Trojan, J., Naval, X., Johnson, T., Lafarge-Frayssinet, C., Hajeri-Germond, M., Farges, O., Pan, Y., Uriel, J., Abramasky, O., & Ilan, J. (1995). Expression of serum albumin and of alphafetoprotein in murine normal and neoplastic primitive embryonic structures. Molecular Reproduction and Development, 42, 369–378.

    Article  CAS  Google Scholar 

  • Uchida, S., De Gaspari, P., Kostin, S., Jenniches, K., Kilic, A., Izumiya, Y., Shiojima, I., Grosse Kreymborg, K., Renz, H. & Walsh, K. J. S. C. R. (2013). Sca1-derived cells are a source of myocardial renewal in the murine adult heart. 1, 397–410.

    Google Scholar 

  • Van Pham, P. J. B. R. T. (2016). Stem cell drugs: the next generation of pharmaceutical products. 3, 857–871.

    Google Scholar 

  • Vega, A., Martín-Ferrero, M. A., Del Canto, F., Alberca, M., García, V., Munar, A., Orozco, L., Soler, R., Fuertes, J. J. & Huguet, M. J. T. (2015). Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: A randomized controlled trial. 99, 1681–1690.

    Google Scholar 

  • Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M. & Stojkovic, M. J. I. J. O. M. S. (2018). Ethical and safety issues of stem cell-based therapy. 15, 36.

    Google Scholar 

  • Weiss, A. R. R. & Dahlke, M. H. J. F. I. I. (2019). Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. 10, 1191.

    Google Scholar 

  • Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., FU, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O. & Jaenisch, R. J. P. O. T. N. A. O. S. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. 105, 5856–5861.

    Google Scholar 

  • White, A. J., Smith, R. R., Matsushita, S., Chakravarty, T., Czer, L. S., Burton, K., Schwarz, E. R., Davis, D. R., Wang, Q. & Reinsmoen, N. L. J. E. H. J. (2013). Intrinsic cardiac origin of human cardiosphere-derived cells. 34, 68–75.

    Google Scholar 

  • Yamahara, K., Hamada, A., Soma, T., Okamoto, R., Okada, M., Yoshihara, S., Yoshihara, K., Ikegame, K., Tamaki, H. & Kaida, K. J. B. O. (2019). Safety and efficacy of amnion-derived mesenchymal stem cells (AM01) in patients with steroid-refractory acute graft-versus-host disease after allogeneic haematopoietic stem cell transplantation: a study protocol for a phase I/II Japanese trial. 9, e026403.

    Google Scholar 

  • Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H., Roby, K. F. & Roden, R. B. J. C. R. (2006). CD80 in immune suppression by mouse ovarian carcinoma–associated Gr-1+ CD11b+ myeloid cells. 66, 6807–6815.

    Google Scholar 

  • Yoshihara, M., Hayashizaki, Y., Murakawa, Y. J. S. C. R. & Reports (2017). Genomic instability of iPSCs: Challenges towards their clinical applications. 13, 7–16.

    Google Scholar 

  • Zhou, C., Yang, B., Tian, Y., Jiao, H., Zheng, W., Wang, J. & Guan, F. J. C. I. (2011). Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. 272, 33–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa A. A. Aljabali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aljabali, A.A.A. et al. (2021). Stem Cell-Based Products in the Market. In: Khan, F.A. (eds) Advances in Application of Stem Cells: From Bench to Clinics. Stem Cell Biology and Regenerative Medicine, vol 69. Humana, Cham. https://doi.org/10.1007/978-3-030-78101-9_11

Download citation

Publish with us

Policies and ethics