Skip to main content

Microfracture Augmentation Options for Cartilage Repair

  • Chapter
  • First Online:
Cartilage Injury of the Knee

Abstract

Historically, microfracture was a commonly utilized procedure for treating small focal chondral defects of the knee. However, studies have demonstrated that microfracture lacks long-term durability. Despite this, microfracture remains the most commonly performed cartilage repair treatment due to its technical ease, cost-effectiveness, and the ability to be performed as a one-stage procedure. Over the last decade, novel techniques for augmenting microfracture to improve long-term outcomes have emerged. These approaches fall into two main categories: scaffolds and orthobiologics. The goal of both of these augmentations is to improve cartilage fill and durability, thereby improving long-term outcomes. Scaffolds provide a structure for cell proliferation and can be applied with a sealant to inhibit extravasation of bone marrow elements into the joint after marrow stimulation. The goal of orthobiologics is to increase the availability of cytokines and cells necessary for cartilage development. This chapter will explore the current landscape of microfracture augmentation with a focus on scaffold and orthobiologic augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curl WW, et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.

    Article  CAS  PubMed  Google Scholar 

  2. Weber AE, et al. Clinical outcomes after microfracture of the knee: midterm follow-up. Orthop J Sports Med. 2018;6:2325967117753572.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kreuz PC, et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006;22:1180–6.

    Article  PubMed  Google Scholar 

  4. Steadman JR, Rodkey WG, Briggs KK. Microfracture. Cartilage. 2010;1:78–86.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper Tech Orthop. 1997;7:300–4.

    Article  Google Scholar 

  6. Augustin G, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2007;128:71–7.

    Article  PubMed  Google Scholar 

  7. Chen H, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27:1432–8.

    Article  PubMed  Google Scholar 

  8. Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med. 2014;42:2741–50.

    Article  PubMed  Google Scholar 

  9. Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H. Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med. 2015;44:209–19.

    Article  PubMed  Google Scholar 

  10. Chen H, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29:1178–84.

    Article  PubMed  Google Scholar 

  11. Gianakos AL, et al. The effect of different bone marrow stimulation techniques on human talar subchondral bone: a micro-computed tomography evaluation. Arthroscopy. 2016;32:2110–7.

    Article  PubMed  Google Scholar 

  12. Bonazza NA, et al. Surgical trends in articular cartilage injuries of the knee, analysis of the Truven Health MarketScan commercial claims database from 2005-2014. Arthrosc Sports Med Rehab Online. 2019;1:e101–7.

    Google Scholar 

  13. Gowd AK, et al. Management of chondral lesions of the knee: analysis of trends and short-term complications using the national surgical quality improvement program database. Arthroscopy. 2018;35:138–46.

    Article  PubMed  Google Scholar 

  14. Kreuz PC, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil. 2006;14:1119–25.

    Article  CAS  Google Scholar 

  15. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2013;22:1986–96.

    Article  PubMed  Google Scholar 

  16. Gudas R, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21:1066–75.

    Article  PubMed  Google Scholar 

  17. Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15-17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med. 2017;46:826–31.

    Article  PubMed  Google Scholar 

  18. Krych AJ, Harnly HW, Rodeo SA, Williams RJ. Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study. J Bone Joint Surg Am. 2012;94:971–8.

    Article  PubMed  Google Scholar 

  19. Aae TF, Randsborg P-H, Lurås H, Årøen A, Lian ØB. Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc. 2017;26:1044–52.

    PubMed  PubMed Central  Google Scholar 

  20. Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: a comparative study between two treatments cohorts. Cartilage. 2018:1947603518783482. https://doi.org/10.1177/1947603518783482.

  21. Strauss EJ, Barker JU, Kercher JS, Cole BJ, Mithoefer K. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage. 2010;1:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanke AB, Chubinskaya S. The state of cartilage regeneration: current and future technologies. Curr Rev Musculoskelet Med. 2015;8:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Riff A, Davey A, Cole B. Joint Preserv Knee. 2019:295–319. https://doi.org/10.1007/978-3-030-01491-9_18.

  24. Arshi A, et al. Can biologic augmentation improve clinical outcomes following microfracture for symptomatic cartilage defects of the knee? A systematic review. Cartilage. 2018;9:146–55.

    Article  PubMed  Google Scholar 

  25. Lee GW, Son J-H, Kim J-D, Jung G-H. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol. 2012;23:581–7.

    Article  PubMed  Google Scholar 

  26. Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J, Tak D-H. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2015;32:97–109.

    Article  PubMed  Google Scholar 

  27. Gudas R, Mačiulaitis J, Staškūnas M, Smailys A. Clinical outcome after treatment of single and multiple cartilage defects by autologous matrix-induced chondrogenesis. J Orthop Surg Hong Kong. 2019;27:2309499019851011.

    PubMed  Google Scholar 

  28. Bertho P, Pauvert A, Pouderoux T, Robert H, Orthopaedics and Traumatology Society of Western France (SOO). Treatment of large deep osteochondritis lesions of the knee by autologous matrix-induced chondrogenesis (AMIC): preliminary results in 13 patients. Orthop Traumatol Surg Res. 2018;104:695–700.

    Article  PubMed  Google Scholar 

  29. Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage. 2010;1:65–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee YHD, Suzer F, Thermann H. Autologous matrix-induced chondrogenesis in the knee. Cartilage. 2014;5:145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Benthien J, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc. 2011;19:1316–9.

    Article  PubMed  Google Scholar 

  32. Kusano T, et al. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2011;20:2109–15.

    Article  PubMed  Google Scholar 

  33. Gille J, et al. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. Arch Orthop Trauma Surg. 2012;133:87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gille J, et al. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18:1456–64.

    Article  CAS  PubMed  Google Scholar 

  35. Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at five years. Int Orthop. 2017;41:797–804.

    Article  PubMed  Google Scholar 

  36. Anders S, Volz M, Frick H, Gellissen J. A randomized, controlled trial comparing autologous matrix-induced chondrogenesis (AMIC®) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J. 2013;7:133–43.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fossum V, Hansen AK, Wilsgaard T, Knutsen G. Collagen-covered autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis: a randomized trial comparing 2 methods for repair of cartilage defects of the knee. Orthop J Sports Med. 2019;7:232596711986821.

    Article  Google Scholar 

  38. de Girolamo L, et al. Autologous matrix-induced chondrogenesis (AMIC) and AMIC enhanced by autologous concentrated bone marrow aspirate (BMAC) allow for stable clinical and functional improvements at up to 9 years follow-up: results from a randomized controlled study. J Clin Med. 2019;8:392.

    Article  PubMed Central  Google Scholar 

  39. Beck A, Murphy DJ, Carey-Smith R, Wood DJ, Zheng MH. Treatment of articular cartilage defects with microfracture and autologous matrix-induced chondrogenesis leads to extensive subchondral bone cyst formation in a sheep model. Am J Sports Med. 2016;44:2629–43.

    Article  PubMed  Google Scholar 

  40. Whyte GP, McGee A, Jazrawi L, Meislin R. Comparison of collagen graft fixation methods in the porcine knee: implications for matrix-assisted chondrocyte implantation and second-generation autologous chondrocyte implantation. Arthroscopy. 2016;32:820–7.

    Article  PubMed  Google Scholar 

  41. Cassar-Gheiti AJ, Byrne DP, Kavanagh E, Mulhall KJ. Comparison of four chondral repair techniques in the hip joint: a biomechanical study using a physiological human cadaveric model. Osteoarthr Cartil. 2015;23:1018–25.

    Article  CAS  Google Scholar 

  42. Endres M, et al. Synovial fluid recruits human mesenchymal progenitors from subchondral spongious bone marrow. J Orthop Res. 2007;25:1299–307.

    Article  PubMed  Google Scholar 

  43. Jin R, et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials. 2010;31:3103–13.

    Article  CAS  PubMed  Google Scholar 

  44. Menzies DJ, et al. Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels. Biomacromolecules. 2013;14:413–23.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma B, et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med. 2013;5:167ra6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang D-A, et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater. 2007;6:385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolf MT, et al. Two-year follow-up and remodeling kinetics of ChonDux hydrogel for full-thickness cartilage defect repair in the knee. Cartilage. 2018:194760351880054. https://doi.org/10.1177/1947603518800547.

  48. Erggelet C, et al. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials. 2007;28:5570–80.

    Article  CAS  PubMed  Google Scholar 

  49. Siclari A, Mascaro G, Kaps C, Boux E. A 5-year follow-up after cartilage repair in the knee using a platelet-rich plasma-immersed polymer-based implant. Open Orthop J. 2014;8:346–54.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Enea D, et al. Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate. Knee. 2013;20:562–9.

    Article  CAS  PubMed  Google Scholar 

  51. Hoemann CD, et al. Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil. 2007;15:78–89.

    Article  CAS  Google Scholar 

  52. Méthot S, et al. Osteochondral biopsy analysis demonstrates that BST-CarGel treatment improves structural and cellular characteristics of cartilage repair tissue compared with microfracture. Cartilage. 2016;7:16–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Stanish WD, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg. 2013;95:1640–50.

    Article  PubMed  Google Scholar 

  54. Shive MS, et al. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6:62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi K-H, Choi BH, Park SR, Kim BJ, Min B-H. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials. 2010;31:5355–65.

    Article  CAS  PubMed  Google Scholar 

  56. Jin CZ, Park SR, Choi BH, Park K, Min B-H. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Artif Organs. 2007;31:183–92.

    Article  CAS  PubMed  Google Scholar 

  57. Li TZ, et al. Using cartilage extracellular matrix (CECM) membrane to enhance the reparability of the bone marrow stimulation technique for articular cartilage defect in canine model. Adv Funct Mater. 2012;22:4292–300.

    Article  CAS  Google Scholar 

  58. Chung J, et al. Cartilage extra-cellular matrix biomembrane for the enhancement of microfractured defects. Knee Surg Sports Traumatol Arthrosc. 2014;22:1249–59.

    Article  PubMed  Google Scholar 

  59. Commins J, et al. Biological mechanisms for cartilage repair using a biocartilage scaffold: cellular adhesion/migration and bioactive proteins. Cartilage. 2020:1947603519900803. https://doi.org/10.1177/1947603519900803.

  60. Shieh AK, et al. Effects of micronized cartilage matrix on cartilage repair in osteochondral lesions of the talus. Cartilage. 2018:1947603518796125. https://doi.org/10.1177/1947603518796125.

  61. Abrams GD, Mall NA, Fortier LA, Roller BL, Cole BJ. BioCartilage: background and operative technique. Oper Tech Sport Med. 2013;21:116–24.

    Article  Google Scholar 

  62. Wang KC, Frank RM, Cotter EJ, Christian DR, Cole BJ. Arthroscopic management of isolated tibial plateau defect with microfracture and micronized allogeneic cartilage–platelet-rich plasma adjunct. Arthrosc Tech. 2017;6:e1613–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Solheim E, et al. Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2014;24:1587–93.

    Article  PubMed  Google Scholar 

  64. Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ. Survival analysis of microfracture in the osteoarthritic knee-minimum 10-year follow-up. Arthroscopy. 2013;29:244–50.

    Article  PubMed  Google Scholar 

  65. Cassano JM, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016;26:333–42.

    Article  PubMed  Google Scholar 

  66. Holton J, Imam M, Ward J, Snow M. The basic science of bone marrow aspirate concentrate in chondral injuries. Orthop Rev. 2016;8:6659.

    Article  Google Scholar 

  67. Murphy EP, McGoldrick NP, Curtin M, Kearns SR. A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg. 2018;25:441–8.

    Article  PubMed  Google Scholar 

  68. Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech. 2012;1:e175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44:2846–54.

    Article  PubMed  Google Scholar 

  70. Hussain N, Johal H, Bhandari M. An evidence-based evaluation on the use of platelet rich plasma in orthopedics—a review of the literature. Sicot J. 2017;3:57.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S. Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials. 2012;33:751–61.

    Article  PubMed  CAS  Google Scholar 

  72. Hapa O, et al. Does platelet-rich plasma enhance microfracture treatment for chronic focal chondral defects? An in-vivo study performed in a rat model. Acta Orthop Traumatol. 2013;47:201–7.

    Google Scholar 

  73. Milano G, et al. Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: an experimental study in an animal model. Arthroscopy. 2012;28:688–701.

    Article  PubMed  Google Scholar 

  74. Milano G, et al. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthr Cartil. 2010;18:971–80.

    Article  CAS  Google Scholar 

  75. Boffa A, et al. Platelet-rich plasma augmentation to microfracture provides a limited benefit for the treatment of cartilage lesions: a meta-analysis. Orthop J Sports Med. 2020;8:2325967120910504.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhu Y, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.

    Article  CAS  PubMed  Google Scholar 

  77. Nava S, et al. Long-lasting anti-inflammatory activity of human microfragmented adipose tissue. Stem Cells Int. 2019;2019:5901479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ceylan HH, et al. Can chondral healing be improved following microfracture? The effect of adipocyte tissue derived stem cell therapy. Knee. 2016;23:442–9.

    Article  PubMed  Google Scholar 

  79. Spakova T, et al. A preliminary study comparing microfracture and local adherent transplantation of autologous adipose-derived stem cells followed by intraarticular injection of platelet-rich plasma for the treatment of chondral defects in rabbits. Cartilage. 2017;9:410–6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. McQuilling JP, Vines JB, Kimmerling KA, Mowry KC. Proteomic comparison of amnion and chorion and evaluation of the effects of processing on placental membranes. Wounds Compend Clin Res Pract. 2017;29:E38–42.

    Google Scholar 

  81. Farr J, et al. A randomized controlled single-blind study demonstrating superiority of amniotic suspension allograft injection over hyaluronic acid and saline control for modification of knee osteoarthritis symptoms. J Knee Surg. 2019; https://doi.org/10.1055/s-0039-1696672.

  82. Hao Y, Ma DH-K, Hwang DG, Kim W-S, Zhang F. Identification of antiangiogenic and anti-inflammatory proteins in human amniotic membrane. Cornea. 2000;19:348–52.

    Article  CAS  PubMed  Google Scholar 

  83. Raines AL, et al. Efficacy of particulate amniotic membrane and umbilical cord tissues in attenuating cartilage destruction in an osteoarthritis model. Tissue Eng A. 2017;23:12–9.

    Article  CAS  Google Scholar 

  84. Willett NJ, et al. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther. 2014;16:R47.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Morisset S, Frisbie DD, Robbins PD, Nixon AJ, McIlwraith CW. IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res. 2007;462:221–8.

    Article  PubMed  Google Scholar 

  86. Akmal M, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br. 2005;87-B:1143–9.

    Article  Google Scholar 

  87. Patti AM, Gabriele A, Vulcano A, Ramieri MT, Rocca CD. Effect of hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue Cell. 2001;33:294–300.

    Article  CAS  PubMed  Google Scholar 

  88. Doral MN, et al. Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc. 2011;20:1398–403.

    Article  PubMed  Google Scholar 

  89. Sofu H, et al. Results of hyaluronic acid–based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy. 2017;33:209–16.

    Article  PubMed  Google Scholar 

  90. Legović D, et al. Microfracture technique in combination with intraarticular hyaluronic acid injection in articular cartilage defect regeneration in rabbit model. Coll Antropol. 2009;33:619–23.

    PubMed  Google Scholar 

  91. Strauss E, Schachter A, Frenkel S, Rosen J. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sports Med. 2009;37:720–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Yanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huddleston, H.P., Haunschild, E.D., Wong, S.E., Cole, B.J., Yanke, A.B. (2021). Microfracture Augmentation Options for Cartilage Repair. In: Krych, A.J., Biant, L.C., Gomoll, A.H., Espregueira-Mendes, J., Gobbi, A., Nakamura, N. (eds) Cartilage Injury of the Knee. Springer, Cham. https://doi.org/10.1007/978-3-030-78051-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78051-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78050-0

  • Online ISBN: 978-3-030-78051-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics