Skip to main content

On the Power of Expansion: More Efficient Constructions in the Random Probing Model

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2021 (EUROCRYPT 2021)

Abstract

The random probing model is a leakage model in which each wire of a circuit leaks with a given probability p. This model enjoys practical relevance thanks to a reduction to the noisy leakage model, which is admitted as the right formalization for power and electromagnetic side-channel attacks. In addition, the random probing model is much more convenient than the noisy leakage model to prove the security of masking schemes. In a recent work, Ananth, Ishai, and Sahai (CRYPTO 2018) introduce a nice expansion strategy to construct random probing secure circuits. Their construction tolerates a leakage probability of \(2^{-26}\), which is the first quantified achievable leakage probability in the random probing model. In a follow-up work, Belaïd, Coron, Prouff, Rivain, and Taleb (CRYPTO 2020) generalize their idea and put forward a complete and practical framework to generate random probing secure circuits. The so-called expanding compiler can bootstrap simple base gadgets as long as they satisfy a new security notion called random probing expandability (RPE). They further provide an instantiation of the framework which tolerates a \(2^{-8}\) leakage probability in complexity \(\mathcal {O}(\kappa ^{7.5})\) where \(\kappa \) denotes the security parameter.

In this paper, we provide an in-depth analysis of the RPE security notion. We exhibit the first upper bounds for the main parameter of a RPE gadget, which is known as the amplification order. We further show that the RPE notion can be made tighter and we exhibit strong connections between RPE and the strong non-interference (SNI) composition notion. We then introduce the first generic constructions of gadgets achieving RPE for any number of shares and with nearly optimal amplification orders and provide an asymptotic analysis of such constructions. Last but not least, we introduce new concrete constructions of small gadgets achieving maximal amplification orders. This allows us to obtain much more efficient instantiations of the expanding compiler: we obtain a complexity of \(\mathcal {O}(\kappa ^{3.9})\) for a slightly better leakage probability, as well as \(\mathcal {O}(\kappa ^{3.2})\) for a slightly lower leakage probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fortnow, L., Vadhan, S.P., (eds.) 43rd ACM STOC, pp. 715–724. ACM Press, June 2011

    Google Scholar 

  2. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 427–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_15

    Chapter  Google Scholar 

  3. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with \(O(1/\log (n))\) Leakage Rate. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 586–615. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_21

    Chapter  Google Scholar 

  4. Barthe, G., et al.: Improved parallel mask refreshing algorithms: generic solutions with parametrized non-interference and automated optimizations. J. Cryptogr. Eng. 10(1), 17–26 (2019). https://doi.org/10.1007/s13389-018-00202-2

  5. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM Press, October 2016

    Google Scholar 

  6. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_19

    Chapter  Google Scholar 

  7. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks and countermeasures on the ISW masking scheme. Cryptology ePrint Archive, Report 2016/540 (2016). http://eprint.iacr.org/2016/540

  8. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_22

    Chapter  Google Scholar 

  9. Belaïd, S., Coron, J.-S., Prouff, E., Rivain, M., Taleb, A.R.: Random probing security: verification, composition, expansion and new constructions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 339–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_12

    Chapter  Google Scholar 

  10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  11. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_25

    Chapter  Google Scholar 

  12. Coron, J.-S., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-random generator. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 342–375. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_12

    Chapter  Google Scholar 

  13. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

    Chapter  Google Scholar 

  14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_24

    Chapter  Google Scholar 

  15. Dziembowski, S., Faust, S., Zebrowski, K.: Simple refreshing in the noisy leakage model. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. Part III, volume 11923 of LNCS, pp. 315–344. Springer, Heidelberg (2019)

    Chapter  Google Scholar 

  16. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

    Chapter  MATH  Google Scholar 

  17. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  19. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_9

    Chapter  Google Scholar 

  20. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the French FUI-AAP25 VeriSiCC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Belaïd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belaïd, S., Rivain, M., Taleb, A.R. (2021). On the Power of Expansion: More Efficient Constructions in the Random Probing Model. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12697. Springer, Cham. https://doi.org/10.1007/978-3-030-77886-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77886-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77885-9

  • Online ISBN: 978-3-030-77886-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics