Skip to main content

Identification of the Thermal Conductivity Coefficient of a Substance from a Temperature Field in a Three-Dimensional Domain

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2021)

Abstract

The problem of determining the temperature-dependent thermal conductivity coefficient of a substance in a parallelepiped is considered and investigated. The consideration is carried out on the basis of the first boundary value problem for a three-dimensional non-stationary heat conduction equation. The inverse coefficient problem is reduced to a variational problem and is solved numerically using gradient methods for minimizing the cost functional. The mean-root-square deviations of the temperature field from the experimental data is used as the cost functional. It is well known that it is very important for the gradient methods to determine accurate values of the gradients. For this reason, in this paper we used the efficient Fast Automatic Differentiation technique, which gives the exact functional gradient for the discrete optimal control problem. In this work special attention is paid to the practically important cases when the experimental field is specified only in the subdomain of the object under consideration. The working capacity and effectiveness of the proposed approach are demonstrated by solving a number of nonlinear inverse problems.

This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00666 A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zubov, V.I.: Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation. Comput. Math. Math. Phys. 56(10), 1743–1757 (2016). https://doi.org/10.1134/S0965542516100146

    Article  MathSciNet  MATH  Google Scholar 

  2. Albu, A.F., Evtushenko, Y.G., Zubov, V.I.: Identification of discontinuous thermal conductivity coefficient using fast automatic differentiation. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 295–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_21

    Chapter  Google Scholar 

  3. Zubov, V.I., Albu, A.F.: The FAD-methodology and recovery the thermal conductivity coefficient in two dimension case. In: Proceedings of the VIII International Conference on Optimization Methods and Applications “Optimization and applications”, pp. 39–44 (2017). https://doi.org/10.1007/s11590-018-1304-4

  4. Albu, A.F., Zubov, V.I.: Identification of thermal conductivity coefficient using a given temperature field. Comput. Math. Math. Phys. 58(10), 1585–1599 (2018)

    Article  MathSciNet  Google Scholar 

  5. Albu, A.F., Zubov, V.I.: Identification of the thermal conductivity coefficient using a given surface heat flux. Comput. Math. Math. Phys. 58(12), 2031–2042 (2018)

    Article  MathSciNet  Google Scholar 

  6. Albu, A., Zubov, V.: Identification of the thermal conductivity coefficient in two dimension case. Optim. Lett. 13(8), 1727–1743 (2018). https://doi.org/10.1007/s11590-018-1304-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Albu, A., Zubov, V.: On the stability of the algorithm of identification of the thermal conductivity coefficient. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds.) OPTIMA 2018. CCIS, vol. 974, pp. 247–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_18

    Chapter  Google Scholar 

  8. Evtushenko, Y.G.: Computation of exact gradients in distributed dynamic systems. Optim. Meth. Softw. 9, 45–75 (1998)

    Article  MathSciNet  Google Scholar 

  9. Evtushenko, Y.G., Zubov, V.I.: Generalized fast automatic differentiation technique. Comput. Math. Math. Phys. 56(11), 1819–1833 (2016). https://doi.org/10.1134/S0965542516110075

    Article  MathSciNet  MATH  Google Scholar 

  10. Albu, A.F., Evtushenko, Y.G., Zubov, V.I.: Choice of finite-difference schemes in solving coefficient inverse problems. Comput. Math. Math. Phys. 60(10), 1589–1600 (2020). https://doi.org/10.1134/S0965542520100048

    Article  MathSciNet  MATH  Google Scholar 

  11. Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer Editorial URSS, Moscow (2003). (in Russian)

    Google Scholar 

  12. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 8, 421–439 (1956)

    Article  MathSciNet  Google Scholar 

  13. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    Article  MathSciNet  Google Scholar 

  14. Albu, A.F., Evtushenko, Y.G., Zubov, V.I.: Application of the fast automatic differentiation technique for solving inverse coefficient problems. Comput. Math. Math. Phys. 60(1), 15–25 (2020). https://doi.org/10.1134/S0965542520010042

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zubov, V., Albu, A. (2021). Identification of the Thermal Conductivity Coefficient of a Substance from a Temperature Field in a Three-Dimensional Domain. In: Pardalos, P., Khachay, M., Kazakov, A. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2021. Lecture Notes in Computer Science(), vol 12755. Springer, Cham. https://doi.org/10.1007/978-3-030-77876-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77876-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77875-0

  • Online ISBN: 978-3-030-77876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics