Skip to main content

A Local Search Scheme for the Inequality-Constrained Optimal Control Problem

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2021)

Abstract

This paper addresses the nonconvex optimal control (OC) problem with the cost functional and inequality constraint given by the functionals of Bolza. All the functions in the statement of the problem are state-DC, i.e. presented by a difference of the state-convex functions. Meanwhile, the control system is state-linear. Further, with the help of the Exact Penalization Theory we propose the state-DC form of the penalized cost functional and, using the linearization with respect to the basic nonconvexity of the penalized problem, we study the linearized OC problem.

On this basis, we develop a general scheme of the special Local Search Method with a varying penalty parameter. Finally, we address the convergence of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1976)

    MATH  Google Scholar 

  2. Marchuk, G.I.: Mathematical Modeling in the Environmental Problem. Nauka, Moscow (1982). (in Russian)

    Google Scholar 

  3. Chernousko, F.L., Ananievski, I.M., Reshmin, S.A.: Control of Nonlinear Dynamical Systems: Methods and Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70784-4

    Book  MATH  Google Scholar 

  4. Chernousko, F.L., Banichuk, N.V.: Variational Problems of Mechanics and Control. Numerical Methods. Nauka, Moscow (1973). (in Russian)

    Google Scholar 

  5. Kurzhanski, A.B., Varaiya, P.: Dynamics and Control of Trajectory Tubes: Theory and Computation. Birkhauser, Boston (2014)

    Book  Google Scholar 

  6. Kurzhanski, A.B.: Control and Observation Under Conditions of Uncertainty. Nauka, Moscow (1977). (in Russian)

    Google Scholar 

  7. Vasil’ev, F.P.: Optimization Methods. Factorial Press, Moscow (2002). (in Russian)

    Google Scholar 

  8. Fedorenko, R.P.: Approximate Solution of Optimal Control Problems. Nauka, Moscow (1978). (in Russian)

    MATH  Google Scholar 

  9. Gabasov, R., Kirillova, F.M.: Maximum’s Principle in the Optimal Control Theory. Nauka i Technika, Minsk (1974). (in Russian)

    Google Scholar 

  10. Vasiliev, O.V.: Optimization Methods. Word Federation Publishing Company, Atlanta (1996)

    MATH  Google Scholar 

  11. Srochko, V.A.: Iterative Solution of Optimal Control Problems. Fizmatlit, Moscow (2000). (in Russian)

    Google Scholar 

  12. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-662-02796-7

    Book  MATH  Google Scholar 

  13. Hiriart-Urruty, J.-B.: Generalized differentiability, duality and optimization for problem dealing with difference of convex functions. In: Ponstein, J. (ed.) Convexity and Duality in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 256, pp. 37–69. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-45610-7_3

    Chapter  MATH  Google Scholar 

  14. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-02598-7

    Book  MATH  Google Scholar 

  15. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  16. Eremin, I.: The penalty method in convex programming. Soviet Math. Dokl. 8, 459–462 (1966)

    MATH  Google Scholar 

  17. Zangwill, W.: Non-linear programming via penalty functions. Manage. Sci. 13(5), 344–358 (1967)

    Article  MathSciNet  Google Scholar 

  18. Zaslavski, A.J.: Exact penalty property in optimization with mixed constraints via variational analysis. SIAM J. Optim. 23(1), 170–187 (2013)

    Article  MathSciNet  Google Scholar 

  19. Burke, J.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29(4), 968–998 (1991)

    Article  MathSciNet  Google Scholar 

  20. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions. Optimization 65(6), 1167–1202 (2016)

    Article  MathSciNet  Google Scholar 

  21. Dolgopolik, M.V., Fominyh, A.V.: Exact penalty functions for optimal control problems I: Main theorem and free-endpoint problems. Optim. Control Appl. Meth. 40, 1018–1044 (2019)

    Article  MathSciNet  Google Scholar 

  22. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. SSORFE. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04247-3

    Book  MATH  Google Scholar 

  23. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Themistocles, M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 465–502. Springer, New York (2014). https://doi.org/10.1007/978-3-642-45610-7_3

    Chapter  MATH  Google Scholar 

  24. Strekalovsky, A.S.: Global optimality conditions for optimal control problems with functions of A.D. Alexandrov. J. Optim. Theory Appl. 159, 297–321 (2013)

    Google Scholar 

  25. Strekalovsky, A.S.: Maximizing a state convex Lagrange functional in optimal control. Autom. Remote Control 73(6), 949–961 (2012)

    Article  MathSciNet  Google Scholar 

  26. Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk (2003). (in Russian)

    Google Scholar 

  27. Strekalovsky, A.S.: Global optimality conditions and exact penalization. Optim. Lett. 13(2), 597–615 (2019). https://doi.org/10.1007/s11590-017-1214-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Strekalovsky, A.S.: Global optimality conditions in nonconvex optimization. J. Optim. Theory Appl. 173(3), 770–792 (2017)

    Article  MathSciNet  Google Scholar 

  29. Strekalovsky, A.S.: New global optimality conditions in a problem with DC constraints. Trudy Inst. Mat. Mekh. UrO RAN 25, 245–261 (2019). (in Russian)

    Article  Google Scholar 

  30. Strekalovsky, A.S., Yanulevich, M.V.: On global search in nonconvex optimal control problems. J. Global Optim. 65(1), 119–135 (2016). https://doi.org/10.1007/s10898-015-0321-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Strekalovsky, A.S., Yanulevich, M.V.: Global search in the optimal control problem with a terminal objective functional represented as a difference of two convex functions. Comput. Math. Math. Phys. 48(7), 1119–1132 (2008)

    Article  MathSciNet  Google Scholar 

  32. Strekalovsky, A.S.: Local search for nonsmooth DC optimization with DC equality and inequality constraints. In: Bagirov, A.M., Gaudioso, M., Karmitsa, N., Mäkelä, M.M., Taheri, S. (eds.) Numerical Nonsmooth Optimization. SSORFE, pp. 229–261. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34910-3_7

    Chapter  Google Scholar 

  33. Strekalovsky, A.S., Minarchenko, I.M.: A local search method for optimization problem with DC inequality constraints. Appl. Math. Model. 58, 229–244 (2018)

    Article  MathSciNet  Google Scholar 

  34. Strekalovsky, A.S.: On local search in DC optimization problems. Appl. Math. Comput. 255, 73–83 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The research was funded by the Ministry of Education and Science of the Russian Federation within the framework of the project “Theoretical foundations, methods and high-performance algorithms for continuous and discrete optimization to support interdisciplinary research” (No. of state registration: 121041300065-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Strekalovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strekalovsky, A.S. (2021). A Local Search Scheme for the Inequality-Constrained Optimal Control Problem. In: Pardalos, P., Khachay, M., Kazakov, A. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2021. Lecture Notes in Computer Science(), vol 12755. Springer, Cham. https://doi.org/10.1007/978-3-030-77876-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77876-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77875-0

  • Online ISBN: 978-3-030-77876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics