Skip to main content

Boolean Substructures in Formal Concept Analysis

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12733))

Included in the following conference series:

Abstract

It is known that a (concept) lattice contains an n-dimensional Boolean suborder if and only if the context contains an n-dimensional contra-nominal scale as subcontext. In this work, we investigate more closely the interplay between the Boolean subcontexts of a given finite context and the Boolean suborders of its concept lattice. To this end, we define mappings from the set of subcontexts of a context to the set of suborders of its concept lattice and vice versa and study their structural properties. In addition, we introduce closed-subcontexts as an extension of closed relations to investigate the set of all sublattices of a given lattice.

Authors are given in alphabetical order. No priority in authorship is implied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albano, A.: Polynomial growth of concept lattices, canonical bases and generators: extremal set theory in formal concept analysis. Ph.D. thesis, SLUB Dresden (2017)

    Google Scholar 

  2. Albano, A.: Rich subcontexts. arXiv preprint arXiv:1701.03478 (2017)

  3. Albano, A., Chornomaz, B.: Why concept lattices are large - extremal theory for the number of minimal generators and formal concepts. In: International Conference on Concept Lattices and Their Applications. CEUR Workshop Proceedings, vol. 1466, pp. 73–86. CEUR-WS.org (2015)

    Google Scholar 

  4. Dias, S.M., Vieira, N.: Reducing the size of concept lattices: the JBOS approach. In: International Conference on Concept Lattices and Their Applications. CEUR Workshop Proceedings, vol. 672, pp. 80–91. CEUR-WS.org (2010)

    Google Scholar 

  5. Felde, M., Hanika, T.: Formal context generation using Dirichlet distributions. In: Endres, D., Alam, M., Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp. 57–71. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23182-8_5

    Chapter  Google Scholar 

  6. Ganter, B., Kuznetsov, S.O.: Scale coarsening as feature selection. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 217–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0_16

    Chapter  Google Scholar 

  7. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  8. Hanika, T., Koyda, M., Stumme, G.: Relevant attributes in formal contexts. In: Endres, D., Alam, M., Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp. 102–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23182-8_8

    Chapter  Google Scholar 

  9. Kauer, M., Krupka, M.: Generating complete sublattices by methods of formal concept analysis. Int. J. Gen Syst 46(5), 475–489 (2017)

    Article  MathSciNet  Google Scholar 

  10. Kuznetsov, S.: Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity. Autom. Doc. Math. Linguist. 24 (1990)

    Google Scholar 

  11. Liu, J., Paulsen, S., Sun, X., Wang, W., Nobel, A.B., Prins, J.F.: Mining approximate frequent itemsets in the presence of noise: algorithm and analysis. In: International Conference on Data Mining, pp. 407–418 (2006)

    Google Scholar 

  12. Qi, J., Wei, L., Wan, Q.: Multi-level granularity in formal concept analysis. Granular Comput. 4(3), 351–362 (2018). https://doi.org/10.1007/s41066-018-0112-7

    Article  Google Scholar 

  13. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

    Article  Google Scholar 

  14. Wille, R.: Bedeutungen von Begriffsverbänden. In: Beiträge zur Begriffsanalyse, pp. 161–211. B.I.-Wissenschaftsverlag, Mannheim (1987)

    Google Scholar 

  15. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Koyda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koyda, M., Stumme, G. (2021). Boolean Substructures in Formal Concept Analysis. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science(), vol 12733. Springer, Cham. https://doi.org/10.1007/978-3-030-77867-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77867-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77866-8

  • Online ISBN: 978-3-030-77867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics