Skip to main content

Fixed-Point Semantics for Barebone Relational Concept Analysis

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12733))

Included in the following conference series:

  • 499 Accesses

Abstract

Relational concept analysis (RCA) extends formal concept analysis (FCA) by taking into account binary relations between formal contexts. It has been designed for inducing description logic TBoxes from ABoxes, but can be used more generally. It is especially useful when there exist circular dependencies between objects. In this case, it extracts a unique stable concept lattice family grounded on the initial formal contexts. However, other stable families may exist whose structure depends on the same relational context. These may be useful in applications that need to extract a richer structure than the minimal grounded one. This issue is first illustrated in a reduced version of RCA, which only retains the relational structure. We then redefine the semantics of RCA on this reduced version in terms of concept lattice families closed by a fixed-point operation induced by this relational structure. We show that these families admit a least and greatest fixed point and that the well-grounded RCA semantics is characterised by the least fixed point. We then study the structure of other fixed points and characterise the interesting lattices as the self-supported fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An anonymous reviewer complements the remarks of Sect. 2.2 noting that RCA\(^0\) is also very related to Graph-FCA as they both have only one context and using existential scaling.

  2. 2.

    Instead of developing both \(\mathscr {K}\) and \(\mathscr {L}\) independently and maintaining an equivalence between them, it would have been possible to use a more FCA-like structure associating the corresponding contexts and lattices.

References

  1. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey extraction. In: Proceedings of 21st European Conference on Artificial Intelligence (ECAI), Praha (CZ), pp. 15–20 (2014)

    Google Scholar 

  2. Atencia, M., David, J., Euzenat, J., Napoli, A., Vizzini, J.: Link key candidate extraction with relational concept analysis. Discret. Appl. Math. 273, 2–20 (2020)

    Article  MathSciNet  Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementations and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Belohlávek, R.: Introduction to formal concept analysis. Technical report, Univerzita Palackého, Olomouc (CZ) (2008)

    Google Scholar 

  5. Ferré, S., Cellier, P.: Graph-FCA: an extension of formal concept analysis to knowledge graphs. Discret. Appl. Math. 273, 81–102 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10

    Chapter  MATH  Google Scholar 

  7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  8. Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., Martin, P.: Practical comparison of FCA extensions to model indeterminate value of ternary data. In: Proceedings of 15th International Conference on Concept Lattices and Their Applications (CLA), Tallinn (EE). CEUR Workshop Proceedings, vol. 2668, pp. 197–208 (2020)

    Google Scholar 

  9. Kuznetsov, S.O.: Pattern structures for analyzing complex data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 33–44. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_4

    Chapter  Google Scholar 

  10. Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-ConceptStruct 2013. LNCS (LNAI), vol. 7735, pp. 301–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35786-2_23

    Chapter  Google Scholar 

  11. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Lecture Notes in Artificial Intelligence, vol. 422. Springer, Berlin (1990). https://doi.org/10.1007/BFb0016445

    Book  MATH  Google Scholar 

  12. Prediger, S.: Logical scaling in formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997. LNCS, vol. 1257, pp. 332–341. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027881

    Chapter  Google Scholar 

  13. Rouane Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)

    Article  MathSciNet  Google Scholar 

  14. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Soundness and completeness of relational concept analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 228–243. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38317-5_15

    Chapter  MATH  Google Scholar 

  15. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the ANR Elker project (ANR-17-CE23-0007-01). The author thanks Philippe Besnard for pointing to the Knaster-Tarski theorem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Euzenat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Euzenat, J. (2021). Fixed-Point Semantics for Barebone Relational Concept Analysis. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science(), vol 12733. Springer, Cham. https://doi.org/10.1007/978-3-030-77867-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77867-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77866-8

  • Online ISBN: 978-3-030-77867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics