Skip to main content

Mathematical Model of the Thermoelasticity of the Surface Layer of Parts During Discontinuous Friction Treatment

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing IV (DSMIE 2021)

Abstract

The developed mathematical model of thermoelasticity and the depth of the surface layer during the frictional treatment of the working surfaces of machine parts with a tool with a discontinuous working part are presented. Friction treatment refers to surface hardening methods using highly concentrated energy sources. A highly concentrated energy source occurs in the tool-contact area during a high-speed metal disk on the treated surface. It is represented by the initial-boundary problem of thermoelasticity formulated in terms of elastic displacements and temperature change. Afterward, the appropriate variational problem is formulated, and the numerical scheme for its solution is constructed. This numerical scheme uses finite element semi-discretization in space and a one-step recurrent time integration scheme. We present numerical results for one-dimensional modeling of dynamical interaction of the heat and mechanical fields in steel workpieces, generated by a periodic sequence of pressure and heat flux impulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwivedi, D.K.: Surface Engineering. Springer, New Delhi (2018). https://doi.org/10.1007/978-81-322-3779-2

  2. Gleiter, H.: Nanostructured materials: basic concepts and microstructure. Acta Mater. 48(1), 1–29 (2000)

    Article  Google Scholar 

  3. Zhang, F., Duan, C., Sun, W., Ju, K.: Effects of cutting conditions on–the microstructure and residual stress of white and dark layers in cutting hardened steel. J. Mater. Process. Tech. 266, 599–611 (2019)

    Article  Google Scholar 

  4. Wan, L.-B., Li, S.-X., Lu, S.-Y., Su, Y.-S., Shu, X.-D., Huang, H.-B.: Case study: formation of white etching layers in a failed rolling element bearing race. Wear 396–397, 126–134 (2018)

    Article  Google Scholar 

  5. Huang, X., Ren, Y., Zhou, Z., Xiao, H.: Experimental study on white layers in high-speed grinding of AISI52100 hardened steel. J. Mech. Sci. Technol. 29(3), 1257–1263 (2015)

    Article  Google Scholar 

  6. Al-Khazraji, A., Amin, S.A., Ali, S.M.: The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. Eng. Sci. Technol. Int. J. 19(3), 1400–1415 (2016)

    Google Scholar 

  7. Zhang, F.-Y., Duan, C.-Z., Wang, M.-J., Sun, W.: White and dark layer formation mechanism in hard cutting of AISI52100 steel. J. Manuf. Processes 32, 878–887 (2018)

    Article  Google Scholar 

  8. Wu, J., Petrov, R.H., Naeimi, M., Li, Z., Dollevoet, R., Sietsma, J.: Laboratory simulation of martensite formation of white etching layer in rail steel. Int. J. Fatigue 91, 11–20 (2016)

    Article  Google Scholar 

  9. Thiercelin, L., Saint-Aimé, L., Lebon, F., Saulot, A.: Thermomechanical modelling of the tribological surface transformations in the railroad network (white etching layer). Mech. Mater. 151, 1–13 (2020)

    Article  Google Scholar 

  10. Soundarapandian, S., Dahotre Narendra, B.: Laser surface hardening. In: Dossett, J., Totten, G.E. (eds.) ASM Handbook. Steel Heat Treating Fundamentals and Processes, vol. 4A, pp. 476–502. ASM International (2013)

    Google Scholar 

  11. Muthuramalingam, T.: Measuring the influence of discharge energy on white layer thickness in electrical discharge machining process. Measurement 131, 694–700 (2019)

    Article  Google Scholar 

  12. Gurey, V., Hurey, I.: The effect of the hardened nanocrystalline surface layer on durability of guideways. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 63–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_7

    Chapter  Google Scholar 

  13. Podstryhach, Ya.S., Kolyano, Yu.M.: Generalized Thermomechanics. Naukova Dumka, Kyiv (1979). (in Russian)

    Google Scholar 

  14. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elasticity 2(1), 1–7 (1972)

    Article  Google Scholar 

  15. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity. A review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Google Scholar 

  16. Das, B.: Problems and Solutions in thermoelasticity and magnetothermoelasticity. In: Das, B. (ed.) Classical and Continuous Physics. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48808-0

    Chapter  Google Scholar 

  17. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press Inc., New York (2010)

    MATH  Google Scholar 

  18. Reza Eslami, M., Hetnarski, R.B., Ignaczak, J., Noda, N., Sumi, N., Tanigawa, Y.: Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions. Springer, Cham (2013). https://doi.org/10.1007/978-94-007-6356-2

    Book  MATH  Google Scholar 

  19. Schwartz, M.: Encyclopedia of Smart Materials. John Wiley & Sons Inc., New York (2002)

    Book  Google Scholar 

  20. Sherief, H.H., El-Latief, A.M.A.: Boundary element method in generalized thermoelasticity. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, pp. 567–575. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-2739-7

    Chapter  Google Scholar 

  21. Berezovski, A., Van, P.: Internal Variables in Thermoelasticity. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56934-5

  22. Hetnarski, R.B., Reza Eslami, M.:Thermal stresses. In: Reza, M. (ed.) Advanced Theory and Applications. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10436-8

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Gurey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurey, V., Shynkarenko, H., Kuzio, I. (2021). Mathematical Model of the Thermoelasticity of the Surface Layer of Parts During Discontinuous Friction Treatment. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77823-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77823-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77822-4

  • Online ISBN: 978-3-030-77823-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics