Skip to main content

Unraveling the Regulation of Cancer/Testis Antigens in Tumorigenesis Through an Analysis of Normal Germ Cell Development in Rodents

  • Chapter
  • First Online:
Molecular Mechanisms in Spermatogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1381))

Abstract

Cancer/testis (CT) antigens are proteins aberrantly overexpressed in various tumorigenic cells, but they can also be normally expressed in the mammalian germline. Most CT antigens are highly immunogenic and known to be involved in cancer cell proliferation and tumor metastasis. A recent genome-wide analysis systematically identified CT antigen expression in 19 cancer types, significantly expanding the repertoire of CT antigens by 5-fold, from over 200 to approximately 1000. However, their function and regulation in tumorigenesis remain poorly understood. The shared functional characteristics between germ cells and cancer cells, if methodically defined, offer a unique gateway to understanding the regulation of CT antigens in cancers by studying gametogenesis. Nonetheless, such studies also provide insightful information on the role of CT antigens in spermatogenesis. Herein, we analyzed publicly available next generation sequencing datasets generated from normal adult testes in rodents, primordial germ cells and cancer samples across a series of published studies and databases. Based on these analyses, we report that a subset of CT antigens belonged to the core fitness gene family. Furthermore, super-enhancers both in normal testes and various cancers controlled specific CT antigens. We found that DNA methylation of CT antigens, such as TEX101 and TAF7L, was inversely correlated with their expression in both normal primordial germ cells and various cancers, which was mediated at least partly by DNA methyltransferase1 (DNMT1). By analyzing data from a testis knockout model, we showed that TAF7L could further influence the expression of additional CT antigens, which also held true in tumors. These findings not only confirmed the previous notion that CT antigens regulate cancer dynamics, but also showed that understanding the regulation of CT antigens during gametogenesis can offer new insights for cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribas, A., Butterfield, L. H., Glaspy, J. A., & Economou, J. S. (2003). Current developments in cancer vaccines and cellular immunotherapy. Journal of Clinical Oncology, 21, 2415–2432.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg, S. A., Yang, J. C., & Restifo, N. P. (2004). Cancer immunotherapy: Moving beyond current vaccines. Nature Medicine, 10, 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang, E. I., Robinson, C. L., Chong, C. N., Chen, S., & Cheng, C. Y. (2018). A look into the testis as a reservoir for HIV an ZIKV - A reproductive biologist’s perspective. In C. Y. Cheng (Ed.), Spermatogenesis: Biology and clinical implications (pp. 183–190). CRC Press/Taylor & Francis Group.

    Chapter  Google Scholar 

  4. Meinhardt, A., & Hedger, M. P. (2011). Immunological, paracrine and endocrine aspects of testicular immune privilege. Molecular and Cellular Endocrinology, 335, 60–68.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, Y. H., Wong, E. W., & Cheng, C. Y. (2011). Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis, 1, 209–220.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T., & Old, L. J. (2005). Cancer/testis antigens, gametogenesis and cancer. Nature Reviews. Cancer, 5, 615–625.

    Article  CAS  PubMed  Google Scholar 

  7. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., & Boon, T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254, 1643–1647.

    Article  PubMed  Google Scholar 

  8. Almeida, L. G., Sakabe, N. J., deOliveira, A. R., Silva, M. C., Mundstein, A. S., Cohen, T., Chen, Y. T., Chua, R., Gurung, S., Gnjatic, S., Jungbluth, A. A., Caballero, O. L., Bairoch, A., Kiesler, E., White, S. L., Simpson, A. J., Old, L. J., Camargo, A. A., & Vasconcelos, A. T. (2009). CTdatabase: A knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Research, 37, D816–D819.

    Article  CAS  PubMed  Google Scholar 

  9. Gjerstorff, M. F., Andersen, M. H., & Ditzel, H. J. (2015). Oncogenic cancer/testis antigens: Prime candidates for immunotherapy. Oncotarget, 6, 15772–15787.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vansteenkiste, J. F., Cho, B. C., Vanakesa, T., De Pas, T., Zielinski, M., Kim, M. S., Jassem, J., Yoshimura, M., Dahabreh, J., Nakayama, H., Havel, L., Kondo, H., Mitsudomi, T., Zarogoulidis, K., Gladkov, O. A., Udud, K., Tada, H., Hoffman, H., Bugge, A., … Altorki, N. (2016). Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology, 17, 822–835.

    Google Scholar 

  11. Ogi, C., & Aruga, A. (2013). Immunological monitoring of anticancer vaccines in clinical trials. Oncoimmunology, 2, e26012.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Old, L. J. (2001). Cancer/testis (CT) antigens - A new link between gametogenesis and cancer. Cancer Immunity, 1, 1.

    CAS  PubMed  Google Scholar 

  13. Wang, C., Gu, Y., Zhang, K., Xie, K., Zhu, M., Dai, N., Jiang, Y., Guo, X., Liu, M., Dai, J., Wu, L., Jin, G., Ma, H., Jiang, T., Yin, R., Xia, Y., Liu, L., Wang, S., Shen, B., … Hu, Z. (2016). Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. Nature Communications, 7, 10499.

    Google Scholar 

  14. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L., & Leek, J. T. (2015). Ballgown bridges the gap between transcriptome assembly and expression analysis. Nature Biotechnology, 33, 243–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., & Liu, X. S. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9, R137.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu, G., Wang, L. G., & He, Q. Y. (2015). ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31, 2382–2383.

    Article  CAS  PubMed  Google Scholar 

  21. Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14, 178–192.

    Article  CAS  PubMed  Google Scholar 

  22. Robinson, J. T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29, 24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B., Lee, T. I., & Young, R. A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 153, 307–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Loven, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R., Bradner, J. E., Lee, T. I., & Young, R. A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153, 320–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K. R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., Mero, P., Dirks, P., Sidhu, S., Roth, F. P., Rissland, O. S., Durocher, D., Angers, S., & Moffat, J. (2015). High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 163, 1515–1526.

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Rico, Y. A., Boeva, V., Mallory, A. C., Bitetti, A., Majello, S., Barillot, E., & Shkumatava, A. (2017). Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes. Genome Research, 27, 259–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-Andre, V., Sigova, A. A., Hoke, H. A., & Young, R. A. (2013). Super-enhancers in the control of cell identity and disease. Cell, 155, 934–947.

    Article  CAS  PubMed  Google Scholar 

  28. Kufer, T. A., Sillje, H. H., Korner, R., Gruss, O. J., Meraldi, P., & Nigg, E. A. (2002). Human TPX2 is required for targeting Aurora-A kinase to the spindle. The Journal of Cell Biology, 158, 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gruss, O. J., Wittmann, M., Yokoyama, H., Pepperkok, R., Kufer, T., Sillje, H., Karsenti, E., Mattaj, I. W., & Vernos, I. (2002). Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biology, 4, 871–879.

    Article  CAS  PubMed  Google Scholar 

  30. Gruss, O. J., Carazo-Salas, R. E., Schatz, C. A., Guarguaglini, G., Kast, J., Wilm, M., Le Bot, N., Vernos, I., Karsenti, E., & Mattaj, I. W. (2001). Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell, 104, 83–93.

    Article  CAS  PubMed  Google Scholar 

  31. Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J., & Vale, R. D. (2013). Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell, 152, 768–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo, F., Yan, L., Guo, H., Li, L., Hu, B., Zhao, Y., Yong, J., Hu, Y., Wang, X., Wei, Y., Wang, W., Li, R., Yan, J., Zhi, X., Zhang, Y., Jin, H., Zhang, W., Hou, Y., Zhu, P., … Qiao, J. (2015). The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell, 161, 1437–1452.

    Google Scholar 

  33. Yamaguchi, S., Hong, K., Liu, R., Shen, L., Inoue, A., Diep, D., Zhang, K., & Zhang, Y. (2013). Tet1 controls meiosis by regulating meiotic gene expression. Nature, 492, 443–447.

    Article  Google Scholar 

  34. Yamaguchi, S., Hong, K., Liu, R., Inoue, A., Shen, L., Zhang, K., & Zhang, Y. (2013). Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Research, 23, 329–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soumillon, M., Necsulea, A., Weier, M., Brawand, D., Zhang, X., Gu, H., Barthes, P., Kokkinaki, M., Nef, S., Gnirke, A., Dym, M., de Massy, B., Mikkelsen, T. S., & Kaessmann, H. (2013). Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Reports, 3, 2179–2190.

    Article  CAS  PubMed  Google Scholar 

  36. Hunter, A. W., Caplow, M., Coy, D. L., Hancock, W. O., Diez, S., Wordeman, L., & Howard, J. (2003). The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Molecular Cell, 11, 445–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganem, N. J., & Compton, D. A. (2004). The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. The Journal of Cell Biology, 166, 473–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gnjatic, S., Cao, Y., Reichelt, U., Yekebas, E. F., Nolker, C., Marx, A. H., Erbersdobler, A., Nishikawa, H., Hildebrandt, Y., Bartels, K., Horn, C., Stahl, T., Gout, I., Filonenko, V., Ling, K. L., Cerundolo, V., Luetkens, T., Ritter, G., Friedrichs, K., … Atanackovic, D. (2010). NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. International Journal of Cancer, 127, 381–393.

    Google Scholar 

  39. Bie, L., Zhao, G., Wang, Y. P., & Zhang, B. (2012). Kinesin family member 2C (KIF2C/MCAK) is a novel marker for prognosis in human gliomas. Clinical Neurology and Neurosurgery, 114, 356–360.

    Article  PubMed  Google Scholar 

  40. Smith, J. S., Tachibana, I., Pohl, U., Lee, H. K., Thanarajasingam, U., Portier, B. P., Ueki, K., Ramaswamy, S., Billings, S. J., Mohrenweiser, H. W., Louis, D. N., & Jenkins, R. B. (2000). A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics, 64, 44–50.

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura, Y., Dagio, Y., & Togashi, A. (2009). Syngr4 for target genes of cancer therapy and diagnosis USA.

    Google Scholar 

  42. Smith, Z. D., & Meissner, A. (2013). DNA methylation: Roles in mammalian development. Nature Reviews. Genetics, 14, 204–220.

    Article  CAS  PubMed  Google Scholar 

  43. Schubeler, D. (2015). Function and information content of DNA methylation. Nature, 517, 321–326.

    Article  CAS  PubMed  Google Scholar 

  44. Heyn, H., Vidal, E., Ferreira, H. J., Vizoso, M., Sayols, S., Gomez, A., Moran, S., Boque-Sastre, R., Guil, S., Martinez-Cardus, A., Lin, C. Y., Royo, R., Sanchez-Mut, J. V., Martinez, R., Gut, M., Torrents, D., Orozco, M., Gut, I., Young, R. A., & Esteller, M. (2016). Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biology, 17, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Baubec, T., & Schubeler, D. (2014). Genomic patterns and context specific interpretation of DNA methylation. Current Opinion in Genetics & Development, 25, 85–92.

    Article  CAS  Google Scholar 

  46. Milekic, M. H., Xin, Y., O’Donnell, A., Kumar, K. K., Bradley-Moore, M., Malaspina, D., Moore, H., Brunner, D., Ge, Y., Edwards, J., Paul, S., Haghighi, F. G., & Gingrich, J. A. (2015). Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Molecular Psychiatry, 20, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  47. Messerschmidt, D. M., Knowles, B. B., & Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes & Development, 28, 812–828.

    Article  CAS  Google Scholar 

  48. Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., Popp, C., Thienpont, B., Dean, W., & Reik, W. (2012). The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Molecular Cell, 48, 849–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M., & Saitou, M. (2013). Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. The EMBO Journal, 32, 340–353.

    Article  CAS  PubMed  Google Scholar 

  50. Maatouk, D. M., Kellam, L. D., Mann, M. R., Lei, H., Li, E., Bartolomei, M. S., & Resnick, J. L. (2006). DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development, 133, 3411–3418.

    Article  CAS  PubMed  Google Scholar 

  51. Hargan-Calvopina, J., Taylor, S., Cook, H., Hu, Z., Lee, S. A., Yen, M. R., Chiang, Y. S., Chen, P. Y., & Clark, A. T. (2016). Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation. Developmental Cell, 39, 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, W., Guo, X. J., Teng, F., Hou, X. J., Lv, Z., Zhou, S. Y., Bi, Y., Wan, H. F., Feng, C. J., Yuan, Y., Zhao, X. Y., Wang, L., Sha, J. H., & Zhou, Q. (2013). Tex101 is essential for male fertility by affecting sperm migration into the oviduct in mice. Journal of Molecular Cell Biology, 5, 345–347.

    Article  CAS  PubMed  Google Scholar 

  53. Fujihara, Y., Tokuhiro, K., Muro, Y., Kondoh, G., Araki, Y., Ikawa, M., & Okabe, M. (2013). Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 110, 8111–8116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghafouri-Fard, S., Abbasi, A., Moslehi, H., Faramarzi, N., Taba Taba Vakili, S., Mobasheri, M. B., & Modarressi, M. H. (2009). Elevated expression levels of testis-specific genes TEX101 and SPATA19 in basal cell carcinoma and their correlation with clinical and pathological features. The British Journal of Dermatology, 162, 772–779.

    Article  PubMed  Google Scholar 

  55. Dianatpour, M., Mehdipour, P., Nayernia, K., Mobasheri, M. B., Ghafouri-Fard, S., Savad, S., & Modarressi, M. H. (2012). Expression of testis specific genes TSGA10, TEX101 and ODF3 in breast cancer. Iranian Red Crescent Medical Journal, 14, 722–726.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mobasheri, M. B., Shirkoohi, R., Zendehdel, K., Jahanzad, I., Talebi, S., Afsharpad, M., & Modarressi, M. H. (2015). Transcriptome analysis of the cancer/testis genes, DAZ1, AURKC, and TEX101, in breast tumors and six breast cancer cell lines. Tumour Biology, 36, 8201–8206.

    Article  CAS  PubMed  Google Scholar 

  57. Yoshitake, H., Yokoi, H., Ishikawa, H., Maruyama, M., Endo, S., Nojima, M., Yoshida, K., Yoshikawa, H., Suzuki, F., Takamori, K., Fujiwara, H., & Araki, Y. (2012). Overexpression of TEX101, a potential novel cancer marker, in head and neck squamous cell carcinoma. Cancer Biomarkers, 12, 141–148.

    Article  CAS  PubMed  Google Scholar 

  58. Heiser, L. M., Sadanandam, A., Kuo, W. L., Benz, S. C., Goldstein, T. C., Ng, S., Gibb, W. J., Wang, N. J., Ziyad, S., Tong, F., Bayani, N., Hu, Z., Billig, J. I., Dueregger, A., Lewis, S., Jakkula, L., Korkola, J. E., Durinck, S., Pepin, F., … Spellman, P. T. (2012). Subtype and pathway specific responses to anticancer compounds in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 2724–2729.

    Google Scholar 

  59. Pointud, J. C., Mengus, G., Brancorsini, S., Monaco, L., Parvinen, M., Sassone-Corsi, P., & Davidson, I. (2003). The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. Journal of Cell Science, 116, 1847–1858.

    Article  CAS  PubMed  Google Scholar 

  60. Kimmins, S., Kotaja, N., Davidson, I., & Sassone-Corsi, P. (2004). Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction, 128, 5–12.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng, Y., Buffone, M. G., Kouadio, M., Goodheart, M., Page, D. C., Gerton, G. L., Davidson, I., & Wang, P. J. (2007). Abnormal sperm in mice lacking the Taf7l gene. Molecular and Cellular Biology, 27, 2582–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yazarloo, F., Shirkoohi, R., Mobasheri, M. B., Emami, A., & Modarressi, M. H. (2013). Expression analysis of four testis-specific genes AURKC, OIP5, PIWIL2 and TAF7L in acute myeloid leukemia: A gender-dependent expression pattern. Medical Oncology, 30, 368.

    Article  PubMed  Google Scholar 

  63. Zhou, H., Grubisic, I., Zheng, K., He, Y., Wang, P. J., Kaplan, T., & Tjian, R. (2013). Taf7l cooperates with Trf2 to regulate spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 110, 16886–16891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong, X. Y., Su, Y. R., Qian, X. P., Yang, X. A., Pang, X. W., Wu, H. Y., & Chen, W. F. (2003). Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients. British Journal of Cancer, 89, 291–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doghman-Bouguerra, M., Granatiero, V., Sbiera, S., Sbiera, I., Lacas-Gervais, S., Brau, F., Fassnacht, M., Rizzuto, R., & Lalli, E. (2016). FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Reports, 17, 1264–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. da Silva, V. L., Fonseca, A. F., Fonseca, M., da Silva, T. E., Coelho, A. C., Kroll, J. E., de Souza, J. E. S., Stransky, B., de Souza, G. A., & de Souza, S. J. (2017). Genome-wide identification of cancer/testis genes and their association with prognosis in a pan-cancer analysis. Oncotarget, 8, 92966–92977.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Old, L. J. (2007). Cancer is a somatic cell pregnancy. Cancer Immunity, 7, 19.

    PubMed  PubMed Central  Google Scholar 

  68. Mansour, M. R., Abraham, B. J., Anders, L., Berezovskaya, A., Gutierrez, A., Durbin, A. D., Etchin, J., Lawton, L., Sallan, S. E., Silverman, L. B., Loh, M. L., Hunger, S. P., Sanda, T., Young, R. A., & Look, A. T. (2014). Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 346, 1373–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chapuy, B., McKeown, M. R., Lin, C. Y., Monti, S., Roemer, M. G., Qi, J., Rahl, P. B., Sun, H. H., Yeda, K. T., Doench, J. G., Reichert, E., Kung, A. L., Rodig, S. J., Young, R. A., Shipp, M. A., & Bradner, J. E. (2013). Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell, 24, 777–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chipumuro, E., Marco, E., Christensen, C. L., Kwiatkowski, N., Zhang, T., Hatheway, C. M., Abraham, B. J., Sharma, B., Yeung, C., Altabef, A., Perez-Atayde, A., Wong, K. K., Yuan, G. C., Gray, N. S., Young, R. A., & George, R. E. (2014). CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell, 159, 1126–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kulis, M., & Esteller, M. (2010). DNA methylation and cancer. Advances in Genetics, 70, 27–56.

    Article  PubMed  Google Scholar 

  72. Van Tongelen, A., Loriot, A., & De Smet, C. (2017). Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Letters, 396, 130–137.

    Article  PubMed  Google Scholar 

  73. De Smet, C., & Loriot, A. (2013). DNA hypomethylation and activation of germline-specific genes in cancer. Advances in Experimental Medicine and Biology, 754, 149–166.

    Article  PubMed  Google Scholar 

  74. Shichijio, S., Yamada, A., Sagawa, K., Iwanmoto, O., Sakata, M., Nagai, K., & Itoh, K. (1996). Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2′-deoxycytidine. Japanese Journal of Cancer Research, 87, 751–756.

    Article  Google Scholar 

  75. Milutinovic, S., Zhuang, Q., Niveleau, A., & Szyf, M. (2003). Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. The Journal of Biological Chemistry, 278, 14985–14995.

    Article  CAS  PubMed  Google Scholar 

  76. James, S. R., Link, P. A., & Karpf, A. R. (2006). Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene, 25, 6975–6985.

    Article  CAS  PubMed  Google Scholar 

  77. De Smet, C., Lurquin, C., Lethe, B., Martelange, V., & Boon, T. (1999). DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Molecular and Cellular Biology, 19, 7327–7335.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hoffmann, M. J., Muller, M., Engers, R., & Schulz, W. A. (2006). Epigenetic control of CTCFL/BORIS and OCT4 expression in urogenital malignancies. Biochemical Pharmacology, 72, 1577–1588.

    Article  CAS  PubMed  Google Scholar 

  79. Woloszynska-Read, A., James, S. R., Link, P. A., Yu, J., Odunsi, K., & Karpf, A. R. (2007). DNA methylation-dependent regulation of BORIS/CTCFL expression in ovarian cancer. Cancer Immunity, 7, 21.

    PubMed  PubMed Central  Google Scholar 

  80. Hong, J. A., Kang, Y., Abdullaev, Z., Flanagan, P. T., Pack, S. D., Fischette, M. R., Adnani, M. T., Loukinov, D. I., Vatolin, S., Risinger, J. I., Custer, M., Chen, G. A., Zhao, M., Nguyen, D. M., Barrett, J. C., Lobanenkov, V. V., & Schrump, D. S. (2005). Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Research, 65, 7763–7774.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 HD056034 to C.Y.C.); H.C. was supported by the S.Y. Law Memorial Fellowship and the F. Lau Memorial Fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Jiang, Y., Mruk, D.D., Cheng, C.Y. (2021). Unraveling the Regulation of Cancer/Testis Antigens in Tumorigenesis Through an Analysis of Normal Germ Cell Development in Rodents. In: Cheng, C., Sun, F. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 1381. Springer, Cham. https://doi.org/10.1007/978-3-030-77779-1_4

Download citation

Publish with us

Policies and ethics