Skip to main content

Interactions of Automated Vehicles with Road Users

  • Chapter
  • First Online:
User Experience Design in the Era of Automated Driving

Part of the book series: Studies in Computational Intelligence ((SCI,volume 980))

Abstract

As the control of driving tasks is increasingly transferred from the human driver to the on-board sensor and computer systems, a potential gap in communication is created between the car as an entity, and other road users. How can pedestrians, cyclists, and other drivers be certain that an automated vehicle is aware of the different road users in its environment and will do the ‘right thing’? In the need for creating a sense of optimal trust in automated vehicles, particularly in the nascent stages of their development and introduction to traffic, this communication gap needs to be filled. This chapter looks at the state of the art of the research that tries to answer this question, and lays out some common considerations and recommendations for the design of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams, R.A., Christ, S.E.: Motion onset captures attention. Psychol. Sci. 14(5), 427–432 (2003)

    Article  Google Scholar 

  2. Ackerman, E.: Drive.ai Solves Autonomous Cars’ Communication Problem (2016). Retrieved 28 Mar 2018, from https://spectrum.ieee.org/cars-that-think/transportation/self-driving/driveai-solves-autonomous-cars-communication-problem

  3. Ackerman, E.: Drive.ai Launches Robot Car Pilot in Texas with a Focus on Humans (2018)

    Google Scholar 

  4. Anthony, S.E.: The Trollable Self-driving Car (2016)

    Google Scholar 

  5. Bazilinskyy, P., Kyriakidis, M., de Winter, J.: An international crowdsourcing study into people’s statements on fully automated driving. Procedia Manuf. 3(AHFE), 2534–2542 (2015). https://doi.org/10.1016/j.promfg.2015.07.540

  6. Beggiato, M., Witzlack, C., Krems, J.F.: Gap acceptance and time-to-arrival estimates as basis for informal communication between pedestrians and vehicles. In: AutomotiveUI 2017—9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, Proceedings, pp. 50–57. Oldenburg (2017). https://doi.org/10.1145/3122986.3122995

  7. Beggiato, M., Witzlack, C., Springer, S., Krems, J.: The right moment for braking as informal communication signal between automated vehicles and pedestrians in crossing situations. In: AHFE 2017. Advances in Intelligent Systems and Computing, vol. 597, pp. 1072–1081 (2017). https://doi.org/10.1007/978-3-319-60441-1

  8. Bernstein, A., Bose, R., Nooteboom, L., Pindeus, M.: Blink: Humanising Autonomy (2017). Retrieved 14 Aug 2019, from https://starts-prize.aec.at/en/blink-humanising-autonomy/

  9. Björklund, G.M., Åberg, L.: Driver behaviour in intersections: Formal and informal traffic rules. Transport. Res. F: Traffic Psychol. Behav. 8(3), 239–253 (2005)

    Article  Google Scholar 

  10. Böckle, M.-P., Brenden, A.P., Klingegård, M., Habibovic, A., Bout, M.: SAV2P—Exploring the impact of an interface for shared automated vehicles on pedestrians’ experience. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct—AutomotiveUI ’17, pp. 136–140. Oldenburg, Germany (2017). https://doi.org/10.1145/3131726.3131765

  11. Bridger, R.S.: Introduction to Ergonomics (3rd edn). CRC Press, Boca Raton (2008). https://doi.org/10.1201/9781439894927

  12. Chang, C.-M., Toda, K., Igarashi, T., Miyata, M., Kobayashi, Y.: A video-based study comparing communication modalities between an autonomous car and a pedestrian. In: Adjunct Proceedings of the 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’18), pp. 104–109. Toronto, Canada. https://doi.org/10.1145/3239092.3265950

  13. Chang, C.-M., Toda, K., Sakamoto, D., Igarashi, T.: Eyes on a car: An interface design for communication between an autonomous car and a pedestrian. In: Proceedings of the 9th ACM International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’17), pp. 65–73 (2017). https://doi.org/10.1145/3122986.3122989

  14. Choi, J.K., Ji, Y.G.: Investigating the Importance of Trust on Adopting an Autonomous Vehicle. International Journal of Human-Computer Interaction 31(10), 692–702 (2015). https://doi.org/10.1080/10447318.2015.1070549

    Article  Google Scholar 

  15. Clamann, M., Aubert, M., Cummings, M.L.: Evaluation of vehicle-to-pedestrian communication displays for autonomous vehicles. In: 96th Annual Transportation Research Board Meeting (2017)

    Google Scholar 

  16. Clay, D.: Driver Attitude and Attribution: Implications for Accident Prevention. Cranfield University (1995)

    Google Scholar 

  17. De Clercq, G.K., Dietrich, A., Núñez Velasco, J.P., De Winter, J., Happee, R.: External Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing Decisions (2018)

    Google Scholar 

  18. Connor, S.: First self-driving cars will be unmarked so that other drivers don’t try to bully them. Technology. The Guardian (2016). Retrieved from https://www.theguardian.com/technology/2016/oct/30/volvo-self-driving-car-autonomous

  19. D’Onfro, J.: Why Google Made its Self-driving Car Look so Cute (2014). Retrieved from https://www.businessinsider.com/google-self-driving-car-why-its-so-cute-2014-12

  20. Daimler, A.G.: The Mercedes-Benz F 015 Luxury in Motion (2015). Retrieved from https://www.mercedes-benz.com/en/mercedes-benz/innovation/research-vehicle-f-015-luxury-in-motion/

  21. Daziano, R.A., Sarrias, M., Leard, B.: Are consumers willing to pay to let cars drive for them? Analyzing response to autonomous vehicles. Transp. Res. Part C: Emerg. Technol. 78, 150–164 (2017). https://doi.org/10.1016/j.trc.2017.03.003

    Article  Google Scholar 

  22. Deb, S., Strawderman, L., Carruth, D.W., DuBien, J., Smith, B., Garrison, T.M.: Development and validation of a questionnaire to assess pedestrian receptivity toward fully autonomous vehicles. Transp. Res. Part C: Emerg. Technol. 84, 178–195 (2017). https://doi.org/10.1016/j.trc.2017.08.029

    Article  Google Scholar 

  23. Deb, S., Strawderman, L.J., Carruth, D.W.: Investigating pedestrian suggestions for external features on fully autonomous vehicles: A virtual reality experiment. Transport. Res. F: Traffic Psychol. Behav. 59, 135–149 (2018). https://doi.org/10.1016/j.trf.2018.08.016

    Article  Google Scholar 

  24. Demiroz, Y.I., Onelcin, P., Alver, Y.: Illegal road crossing behavior of pedestrians at overpass locations: Factors affecting gap acceptance, crossing times and overpass use. Accid. Anal. Prev. 80, 220–228 (2015)

    Article  Google Scholar 

  25. Dey, D.: Gaze behavior patterns in pedestrian interaction with vehicles. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’19) (2019)

    Google Scholar 

  26. Dey, D., Habibovic, A., Pfleging, B., Martens, M., Terken, J.: Color and animation preferences for a light band eHMI in interactions between automated vehicles and pedestrians. In: CHI Conference on Human Factors in Computing Systems. Hawai’i, Honolulu, United States, pp. 1–13 (2020). https://doi.org/10.1145/3313831.3376325

  27. Dey, D., Martens, M., Eggen, B., Terken, J.: Pedestrian road-crossing willingness as a function of vehicle automation, external appearance, and driving behaviour. Transport. Res. F: Traffic Psychol. Behav. 65, 191–205 (2019). https://doi.org/10.1016/j.trf.2019.07.027

    Article  Google Scholar 

  28. Dey, D., Martens, M., Wang, C., Ros, F., Terken, J.: Interface concepts for intent communication from autonomous vehicles to vulnerable road users. In: Adjunct Proceedings of the 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’18), pp. 82–86. Toronto, Canada (2018). https://doi.org/10.1145/3239092.3265946

  29. Dey, D., Terken, J.: Pedestrian interaction with vehicles: Roles of explicit and implicit communication. In: AutomotiveUI ’17 ACM 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Oldenburg (2017). https://doi.org/10.1145/3122986.3123009

  30. Dommes, A., Cavallo, V., Dubuisson, J.B., Tournier, I., Vienne, F.: Crossing a two-way street: Comparison of young and old pedestrians. J. Saf. Res. 50, 27–34 (2014). https://doi.org/10.1016/j.jsr.2014.03.008

    Article  Google Scholar 

  31. Emmenegger, C., Risto, M., Bergen, B., Norman, D., Hollan, J.: The critical importance of standards for the communication between autonomous vehicles and humans. In: Automated Vehicles Symposium 2016 (2016)

    Google Scholar 

  32. European Commission: On the sound level of motor vehicles and of replacement silencing systems, and amending Directive 2007/46/EC and repealing Directive 70/157/EEC (2014). Retrieved 25 July 2019, from https://eur-lex.europa.eu/eli/reg/2014/540/oj

  33. European Commission: Annual Accidents Report (2018a)

    Google Scholar 

  34. European Commission: Road Safety in the European Union—Trends, Statistics and Main Challenges (2018b). https://doi.org/10.2832/060333

  35. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A: Policy Pract. 77, 167–181 (2015). https://doi.org/10.1016/j.tra.2015.04.003

    Article  Google Scholar 

  36. Färber, B.: Communication and communication problems between autonomous vehicles and human drivers. In: Autonomous Driving, pp. 125–144. Springer, Berlin, Heidelberg (2016)

    Google Scholar 

  37. Ford Motor Corporation: Ford, Virginia Tech Go Undercover to Develop Signals that Enable Autonomous Vehicles to Communicate with People (2017). Retrieved 25 Apr 2018, from https://media.ford.com/content/fordmedia/fna/us/en/news/2017/09/13/ford-virginia-tech-autonomous-vehicle-human-testing.html

  38. Geruschat, D.R., Hassan, S.E., Turano, K.A.: Gaze behavior while crossing complex intersections. Optom. Vis. Sci. 80(7), 515–528 (2003). 1040-5488/03/8007-0515/0

    Google Scholar 

  39. Gruenefeld, U., Weiss, S., Locken, A., Virgilio, I., Kun, A.L., Boll, S.: VRoad: Gesture-based interaction between pedestrians and automated vehicles in virtual reality. In: 11th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (2019). https://doi.org/10.1145/3349263.3351511

  40. Guéguen, N., Jacob, C.: Direct look versus evasive glance and compliance with a request. J. Soc. Psychol. 142(3), 393–396 (2002). https://doi.org/10.1080/00224540209603907

    Article  Google Scholar 

  41. Guéguen, N., Meineri, S., Eyssartier, C.: A pedestrian’s stare and drivers’ stopping behavior: A field experiment at the pedestrian crossing. Saf. Sci. 75, 87–89 (2015)

    Article  Google Scholar 

  42. Habibovic, A., Andersson, J., Nilsson, J., Nilsson, M., Edgren, C.: Command-based driving for tactical control of highly automated vehicles. Advances in Human Aspects of Transportation, pp. 499–510 (2017). https://doi.org/10.1007/978-3-319-41682-3_42

  43. Habibovic, A., Andersson, J., Nilsson, M., Lundgren, V.M., Nilsson, J.: Evaluating interactions with non-existing automated vehicles: Three Wizard of Oz approaches. In: IEEE Intelligent Vehicles Symposium, Proceedings, 2016-Augus(Iv), pp. 32–37 (2016). https://doi.org/10.1109/IVS.2016.7535360

  44. Habibovic, A., Englund, C., Wedlin, J.: Current gaps, challenges and opportunities in the field of road vehicle automation. Fisita 2014 (2014)

    Google Scholar 

  45. Habibovic, A., Lundgren, V.M., Andersson, J., Klingegård, M., Lagström, T., Sirkka, A., Fagerlönn, J., Edgren, C., Fredriksson, R., Krupenia, S., Saluäär, D., Larsson, P.: Communicating intent of automated vehicles to pedestrians. Front. Psychol. 9(August) (2018). https://doi.org/10.3389/fpsyg.2018.01336

  46. Hancock, P.A., Nourbakhsh, I., Stewart, J.: On the future of transportation in an era of automated and autonomous vehicles. Proc. Natl. Acad. Sci. (2019). 201805770

    Google Scholar 

  47. Holland, C., Hill, R.: The effect of age, gender and driver status on pedestrians’ intentions to cross the road in risky situations. Accid. Anal. Prev. 39(2), 224–237 (2007)

    Article  Google Scholar 

  48. Holländer, K., Colley, A., Mai, C., Häkkilä, J., Alt, F., Pfleging, B.: Investigating the influence of external car displays on pedestrians’ crossing behavior in virtual reality. In: International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI ’19), pp. 1–11, (2019). https://doi.org/10.1145/3338286.3340138

  49. Hudson, C.R., Deb, S., Carruth, D.W., McGinley, J., Frey, D.: Pedestrian perception of autonomous vehicles with external interacting features. Adv. Intell. Syst. Comput. 781, 33–39 (2019). https://doi.org/10.1007/978-3-319-94334-3_5

    Article  Google Scholar 

  50. Hulse, L.M., Xie, H., Galea, E.R.: Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age. Saf. Sci. 102, 1–13 (2018). https://doi.org/10.1016/j.ssci.2017.10.001

    Article  Google Scholar 

  51. International Organization for Standardization (ISO)/TR 23049: TECHNICAL REPORT ISO: Road Vehicles—Ergonomic Aspects of External Visual Communication from Automated Vehicles to Other Road Users, vol. 2018 (2018). Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:tr:23049:ed-1:v1:en

  52. Jaguar Land Rover: The Virtual Eyes Have It (2018). Retrieved 9 Jan 2019, from https://www.jaguarlandrover.com/2018/virtual-eyes-have-it

  53. Kadali, B.R., Vedagiri, P.: Proactive pedestrian safety evaluation at unprotected mid-block crosswalk locations under mixed traffic conditions. Saf. Sci. 89, 94–105 (2016)

    Article  Google Scholar 

  54. Kaur, K., Rampersad, G.: Trust in driverless cars: Investigating key factors influencing the adoption of driverless cars. J. Eng. Technol. Manage. JET-M 48(April), 87–96 (2018). https://doi.org/10.1016/j.jengtecman.2018.04.006

    Article  Google Scholar 

  55. Keferböck, F., Riener, A.: Strategies for negotiation between autonomous vehicles and pedestrians. Mensch Und Computer 2015—Workshopband (September), pp. 525–532 (2015). Retrieved from https://www.degruyter.com/downloadpdf/books/9783110443905/9783110443905-074/9783110443905-074.pdf

  56. Klatt, W.K., Chesham, A., Lobmaier, J.S.: Putting up a big front: Car design and size affect road-crossing behaviour. PLoS ONE, 11(7) (2016). https://doi.org/10.1371/journal.pone.0159455

  57. Korosec, K.: How to Design a Car When You’re Not a Car Designer (2016)

    Google Scholar 

  58. Kyriakidis, M., Happee, R., de Winter, J.C.F.F.: Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transp. Res. Part F: Traffic Psychol. Behav. 32, 127–140 (2015). https://doi.org/10.1016/j.trf.2015.04.014

  59. Liljamo, T., Liimatainen, H., Pöllänen, M.: Attitudes and concerns on automated vehicles. Transport. Res. F: Traffic Psychol. Behav. 59, 24–44 (2018). https://doi.org/10.1016/j.trf.2018.08.010

    Article  Google Scholar 

  60. Lindgren, A., Chen, F., Jordan, P.W., Zhang, H.: Requirements for the design of advanced driver assistance systems—The differences between Swedish and Chinese drivers. Int. J. Des. 2(2) (2008)

    Google Scholar 

  61. Litman, T.: Autonomous Vehicle Implementation Predictions. Victoria Transport Policy Institute, Victoria, Canada (2017)

    Google Scholar 

  62. Lundgren, V.M., Habibovic, A., Andersson, J., Lagström, T., Nilsson, M., Sirkka, A., Fagerlönn, J., Fredriksson, R., Edgren, C., Krupenia, S., Saluäär, D.: Will there be new communication needs when introducing automated vehicles to the urban context? In: 7th International Conference on Applied Human Factors and Ergonomics (2016). https://doi.org/10.1007/978-3-319-41682-3_41

  63. Mathieu, J., Bootsma, R.J., Berthelon, C., Montagne, G.: Judging arrival times of incoming traffic vehicles is not a prerequisite for safely crossing an intersection: Differential effects of vehicle size and type in passive judgment and active driving tasks. Acta Physiol. (Oxf) 173, 1–12 (2017). https://doi.org/10.1016/j.actpsy.2016.11.014

    Article  Google Scholar 

  64. Matthews, M., Chowdhary, G., Kieson, E.: Intent Communication Between Autonomous Vehicles and Pedestrians (2017). Retrieved from https://arxiv.org/pdf/1708.07123.pdf

  65. Millard-Ball, A.: Pedestrians, autonomous vehicles, and cities. J. Plan. Educ. Res. 38(1), 6–12 (2016). https://doi.org/10.1177/0739456X16675674

    Article  Google Scholar 

  66. Misdariis, N., Pardo, L.-F.: The sound of silence of electric vehicles-issues and answers. InterNoise, hal-017088 (2017). Retrieved from https://hal.archives-ouvertes.fr/hal-01708883

  67. Moore, D., Currano, R., Strack, G.E., Sirkin, D.: The case for implicit external human-machine interfaces for autonomous vehicles. In: 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’19), pp. 295–307 (2019). https://doi.org/10.1145/3342197.3345320

  68. Müller, L., Emmenegger, C., Risto, M.: The social behavior of autonomous vehicles. Science 352(6293), 1573–1576 (2016). https://doi.org/10.1126/science.aaf2654

    Article  Google Scholar 

  69. Nissan Motor Corporation: Nissan IDS Concept: Nissan’s Vision for the Future of EVs and Autonomous Driving (2015). Retrieved from https://europe.nissannews.com/en-GB/releases/release-139047

  70. Nordhoff, S., De Winter, J., Kyriakidis, M., Van Arem, B., Happee, R.: Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. J. Adv. Transp. (2018). https://doi.org/10.1155/2018/5382192

  71. Norman, D.A.: The Design of Everyday Things. Basic Books, Inc. (2002). Retrieved from https://dl.acm.org/citation.cfm?id=2187809

  72. Parasuraman, R., Riley, V.: Humans and automation: Use, misuse, disuse, abuse. Hum. Factors 39(2), 230–253 (1997)

    Article  Google Scholar 

  73. Piff, P.K., Stancato, D.M., Côté, S., Mendoza-denton, R., Keltner, D.: Higher social class predicts increased unethical behavior. Proc. Natl. Acad. Sci. 109(11), 4086–4091 (2012). https://doi.org/10.1073/pnas.1716910114

    Article  Google Scholar 

  74. Pillai, A.: Virtual Reality Based Study to Analyse Pedestrian Attitude Towards Autonomous Vehicles. Aalto University (2017)

    Google Scholar 

  75. Randazzo, R.: Waymo’s Driverless Cars on the Road: Cautious, Clunky, Impressive (2018)

    Google Scholar 

  76. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Agreeing to cross: How drivers and pedestrians communicate. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 264–269. Redondo Beach, CA. https://doi.org/10.1109/IVS.2017.7995730

  77. Rasouli, A., Tsotsos, J.K.: Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Trans. Intell. Transp. Syst. (2019). https://doi.org/10.1109/TITS.2019.2901817

    Article  Google Scholar 

  78. Reig, S., Norman, S., Morales, C.G., Das, S., Steinfeld, A., Forlizzi, J.: A field study of pedestrians and autonomous vehicles. In: Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications—AutomotiveUI ’18, pp. 198–209. Toronto, Canada (2018). https://doi.org/10.1145/3239060.3239064

  79. Richtel, M., Dougherty, C.: Google’s driverless cars run into problem: Cars with drivers. N.Y. Times (2015). https://doi.org/10.1016/j.addbeh.2007.01.026

    Article  Google Scholar 

  80. Risto, M., Emmenegger, C., Vinkhuyzen, E., Cefkin, M., Hollan, J.: Human-vehicle interfaces: The power of vehicle movement gestures in human road user coordination. In: Driving Assessment: The Ninth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design. Manchester Village, Vermont.

    Google Scholar 

  81. Roscoe, S.N.: Airborne displays for flight and navigation. Hum. Factors J. Hum. Factors Ergon. Soc. 10(4), 321–332 (1968). https://doi.org/10.1177/001872086801000402

    Article  Google Scholar 

  82. Rosenblum, L.: Hybrid Cars are Harder to Hear (2008). Retrieved 25 July 2019, from https://newsroom.ucr.edu/news_item.html?action=page&id=1803

  83. Rothenbücher, D., Li, J., Sirkin, D., Mok, B., Ju, W.: Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles. In: 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, pp. 795–802 (2016). https://doi.org/10.1109/ROMAN.2016.7745210

  84. SAE Lighting Standard Practices Committee: Color Specification (J578 Ground Vehicle Standard)—SAE Mobilus (2016). Retrieved from https://saemobilus.sae.org/content/J578_201603/#committee

  85. SAE Standards Works: J3134 Automated Driving System (ADS) Lamps Task Force (2018). Retrieved 27 May 2019, from https://www.sae.org/works/committeeHome.do?comtID=TEVLCS5Z

  86. Schieben, A., Wilbrink, M., Madigan, C.K.R., Louw, T., Merat, N.: Designing the interaction of automated vehicles with other traffic participants: A design framework based on human needs and expectations. Cogn. Technol. Work (2018). https://doi.org/10.1007/s10111-018-0521-z

  87. Schmidt, S., Färber, B.: Pedestrians at the Kerb–recognising the action intentions of humans. Transp. Res. F Traffic Psychol. Behav. 12(4), 300–310 (2009)

    Article  Google Scholar 

  88. Schneemann, F., Gohl, I.: Analyzing driver-pedestrian interaction at crosswalks: A contribution to autonomous driving in urban environments. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 38–43 (2016). https://doi.org/10.1109/IVS.2016.7535361

  89. Semcon: The Smiling Car (2016). Retrieved from http://semcon.com/smilingcar/

  90. Šucha, M., Dostal, D., Risser, R.: Pedestrian-driver communication and decision strategies at marked crossings. Accid. Anal. Prev. 102, 41–50 (2017). https://doi.org/10.1016/j.aap.2017.02.018

    Article  Google Scholar 

  91. Teague Labs: Crossing the Road in the World of Autonomous Cars (2017). Retrieved 25 Apr 2018, from http://labs.teague.com/?p=2394

  92. Terken, J., Pfleging, B.: Toward shared control between automated vehicles and users. Autom. Innov. 3(1), 53–61 (2020). https://doi.org/10.1007/s42154-019-00087-9

    Article  Google Scholar 

  93. Terry, H.R., Charlton, S.G., Perrone, J.A.: The role of looming and attention capture in drivers’ braking responses. Accid. Anal. Prev. 40(4), 1375–1382 (2008)

    Article  Google Scholar 

  94. Tiesler-Wittig, H.: Functional application, regulatory requirements and their future opportunities for lighting of automated driving systems. SAE Technical Paper Series, vol. 01–0848 (2019). https://doi.org/10.4271/2019-01-0848

  95. Tom, A., Granié, M.A.: Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads. Accid. Anal. Prev. 43(5), 1794–1801 (2011). https://doi.org/10.1016/j.aap.2011.04.012

    Article  Google Scholar 

  96. Tournier, I., Dommes, A., Cavallo, V.: Review of safety and mobility issues among older pedestrians. Accid. Anal. Prev. 91, 24–35 (2016). https://doi.org/10.1016/j.aap.2016.02.031

    Article  Google Scholar 

  97. UNECE (United Nations Economic Commission for Europe): UNECE R65 Regulation—Uniform Provisions Concerning the Approval of Special Warning Lamps for Power-Driven Vehicles and Their Trailers (2011)

    Google Scholar 

  98. UNECE (United Nations Economic Commission for Europe): Autonomous Vehicle Signalling Requirements (AVSR) Taskforce (2018). Retrieved 27 May 2019, from https://wiki.unece.org/pages/viewpage.action?pageId=73925596

  99. Varhelyi, A.: Drivers’ speed behaviour at a Zebra crossing: A case study. Accid. Anal. Prev. 30(6), 731–743 (1998)

    Article  Google Scholar 

  100. Vinkhuyzen, E., Cefkin, M.: Developing socially acceptable autonomous vehicles. In: Proceedings of the Ethnographic Praxis in Industry Conference (EPIC), pp. 423–435 (2016)

    Google Scholar 

  101. Vissers, L., Kint, S., van Schagen, I.N.L.G., Hagenzieker, M.P.: Safe Interaction Between Cyclists, Pedestrians and Automated Vehicles: What Do We Know and What Do We Need to Know? The Hague (2017)

    Google Scholar 

  102. Walker, I.: Drivers overtaking bicyclists: Objective data on the effects of riding position, helmet use, vehicle type and apparent gender. Accid. Anal. Prev. 39(2), 417–425 (2007)

    Article  Google Scholar 

  103. Wang, C., Gu, J., Terken, J., Hu, J.: Driver-to-driver communication on the highway: What drivers want. Ambient Intelligence. AmI 2014. Lecture Notes in Computer Science, vol. 8850, pp. 315–327 (2014). https://doi.org/10.1007/978-3-319-14112-1_25

  104. Wang, C., Terken, J., Hu, J.: CarNote: Reducing misunderstanding between drivers by digital augmentation. In: IUI ’17 Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 85–94 (2017). https://doi.org/10.1145/3025171.3025214

  105. Werner, A.: New colours for autonomous driving: An evaluation of chromaticities for the external lighting equipment of autonomous vehicles. ColourTurn, 10(3), 183–193 (2018). https://doi.org/10.25538/tct.v0i1.692

  106. Wickens, C.D., Lee, J., Uu, V., Becker, S.G.: An Introduction to Human Factors Engineering, 2nd edn. Pearson (2004)

    Google Scholar 

  107. Wilde, G.J.S.: Immediate and delayed social interaction in road user behaviour. Appl. Psychol. 29(4), 439–460 (1980)

    Article  Google Scholar 

  108. Windhager, S., Slice, D.E., Schaefer, K., Oberzaucher, E., Thorstensen, T., Grammer, K.: Face to face: The perception of automotive designs. Hum. Nat. 19(4), 331–346 (2008). https://doi.org/10.1007/s12110-008-9047-z

    Article  Google Scholar 

  109. Winkle, T.: Safety benefits of automated vehicles: Extended findings from accident research for development, validation and testing. In: Autonomous Driving: Technical, Legal and Social Aspects, pp. 335–364. Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8_17

  110. Yagil, D.: Beliefs, motives and situational factors related to pedestrians’ self-reported behavior at signal-controlled crossings. Transp. Res. F: Traffic Psychol. Behav. 3(1), 1–13 (2000)

    Article  Google Scholar 

  111. Yang, S.U.: Driver Behavior Impact on Pedestrians’ Crossing Experience in the Conditionally Autonomous Driving Context. KTH Royal Institute of Technology (2017)

    Google Scholar 

  112. Zimmermann, R., Wettach, R.: First step into visceral interaction with autonomous vehicles. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications—AutomotiveUI ’17, pp. 58–64 (2017). https://doi.org/10.1145/3122986.3122988

  113. Zito, G.A., Cazzoli, D., Scheffler, L., Jäger, M., Müri, R.M., Mosimann, U.P., Nyffeler, T., Mast, F.W., Nef, T.: Street crossing behavior in younger and older pedestrians: An eye-and head-tracking study. BMC Geriatr. 15(1), 176 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debargha Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, D., Ackermans, S., Martens, M., Pfleging, B., Terken, J. (2022). Interactions of Automated Vehicles with Road Users. In: Riener, A., Jeon, M., Alvarez, I. (eds) User Experience Design in the Era of Automated Driving. Studies in Computational Intelligence, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-77726-5_20

Download citation

Publish with us

Policies and ethics